OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16963–16970

Mg-doped congruent LiTaO3 crystal for large-aperture quasi-phase matching device

Hideki Ishizuki and Takunori Taira  »View Author Affiliations

Optics Express, Vol. 16, Issue 21, pp. 16963-16970 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (432 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mg-doped congruent composition LiTaO3 (MgLT) crystal, which can be grown by a conventional Czochralski method, has improved properties such as transparent range, thermal conductivity, and coercive field compared to conventional undoped congruent LiTaO3. In this paper, various properties of MgLT including Mg-doping dependence are characterized, and also compared to that of undoped congruent LiTaO3, LiNbO3, and Mg-doped congruent LiNbO3, as a material of high power quasi-phase matching (QPM) device. Up to 3-mm-thick periodically poled MgLT crystal is shown to demonstrate the possibility of large-aperture QPM-MgLT devices. Subsequently, optical parametric oscillation experiments by using periodically poled MgLT are demonstrated to discuss an efficient QPM condition.

© 2008 Optical Society of America

OCIS Codes
(160.3730) Materials : Lithium niobate
(190.4400) Nonlinear optics : Nonlinear optics, materials

ToC Category:

Original Manuscript: July 10, 2008
Revised Manuscript: September 18, 2008
Manuscript Accepted: October 6, 2008
Published: October 9, 2008

Hideki Ishizuki and Takunori Taira, "Mg-doped congruent LiTaO3 crystal for large-aperture quasi-phase matching device," Opt. Express 16, 16963-16970 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric," Phys. Rev. 127, 1918-1939 (1962). [CrossRef]
  2. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992). [CrossRef]
  3. A. Kuroda, and S. Kurimura, "Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields," Appl. Phys. Lett. 69, 1565-1567 (1996). [CrossRef]
  4. H. Ishizuki and T. Taira, "High-energy quasi-phase matched optical-parametric oscillation in periodically poled MgO:LiNbO3 device with 5mm x 5mm aperture," Opt. Lett. 30, 2918-2920 (2005). [CrossRef] [PubMed]
  5. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, "High energy, narrow-bandwidth periodically poled Mg doped LiNbO3 optical parametric oscillator with a volume Bragg grating," Opt. Lett. 32, 2996-2998 (2007). [CrossRef] [PubMed]
  6. I. Breunig, M. Falk, B. Knabe, R. Sowade, K Buse, P. Rabiei, and D. H. Jundt, "Second harmonic generation of 2.6 W green light with thermoelectrically oxidized undoped congruent lithium niobate crystals below 100�?C," Appl. Phys. Lett. 91, 221110 (2007). [CrossRef]
  7. T. Mizushima, H. Furuya, S. Shikii, K. Kusukame, K. Mizuuchi, and K. Yamamoto, "Second Harmonic Generation with High Conversion Efficiency and Wide Temperature Tolerance by Multi-Pass Scheme," Appl. Phys. Express 1, 032003 (2008). [CrossRef]
  8. Y. Hirano, S. Yamamoto, Y. Koyata, M. Imaki, M. Okano, T. Hamagichi, A. Nakamura, T. Yagi, and T. Yanagisawa, "Highly efficient Planar-waveguide Green Laser," In Technical Digest of Conference on Lasers and Electro-Optics (CLEO2008) CPDA3, San Jose, CA, USA (May 4-9, 2008).
  9. K. Kitamura, Y. Furukawa, and K. Niwa, "Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3," Appl. Phys. Lett. 73, 3073-3075 (1998). [CrossRef]
  10. S. Kumaragurubaran, S. Takekawa, M. Nakamura, and K. Kitamura, "Growth of 4-in diameter near-stoichiometric lithium tantalate single crystals," J. Cryst. Growth 285, 88-95 (2005). [CrossRef]
  11. S. Kumaragurubaran, S. Takekawa, M. Nakamura, and K. Kitamura, "Growth of 4-in diameter MgO-doped near-stoichiometric lithium tantalate single crystals and fabrication of periodically poled structures," J. Cryst. Growth 292, 332-336 (2006). [CrossRef]
  12. S. V. Tovstonog, S. Kurimura, and K. Kitamura, "High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalate," Appl. Phys. Lett. 90, 05115 (2007). [CrossRef]
  13. M. Oka, K. Kimura, Y. Maeda, K. Takahashi, N. Iwase, and H. Tamada, "A new compact continuous-wave green laser with line beam," in Digest of Photonics West 2008, 6875-20 (2008).
  14. X. He, K. Li, M. Liu, Y. He, X. Zhang, Y. Zhao, and D. Xue, "An optical spectroscopy study of defects in lithium tantalate single crystals," Opt. Commun. 281, 2531-2534 (2008). [CrossRef]
  15. I. Bhaumik, S. Ganesamoorthy, R. Bhatt, A. K. Karnal, V. K. Wadhawan, P. K. Gupta, S. Kumaragurubaran, K. Kitamura, S. Takekawa, and M. Nakamura, "Dielectric and ac conductivity studies on undoped and MgO-doped near-stoichiometric lithium tantalate crystals," J. Appl. Phys. 103, 074106 (2008). [CrossRef]
  16. H. M. Peltz, U. Bäder, A. Borsutzky, R. Wallenstein, J. Hellström, H. Karlsson, V. Pasiskevicius, and F. Laurell, "Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA," Appl. Phys. B 73, 663-670 (2001). [CrossRef]
  17. B. Jacobsson, C. Canalias, V. Pasiskevicius, and F. Laurell, "Narrowband and tunable ring optical parametric oscillator with a volume Bragg grating," Opt. Lett. 32, 3278-3280 (2007). [CrossRef] [PubMed]
  18. K. Nakamura, J. Kurz, K. Parameswaran, and M. M. Fejer, "Periodic poling of magnesium-oxide-doped lithium niobate," J. Appl. Phys. 91, 4528-4534 (2002). [CrossRef]
  19. H. Ishizuki, I. Shoji, and T. Taira, "Periodic Poling Characteristics of Congruent MgO:LiNbO3 Crystal at Elevated Temperatures," Appl. Phys. Lett. 82, 4062-4064 (2003). [CrossRef]
  20. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, "Absolute scale of second-order nonlinear-optical coefficients," J. Opt. Soc. Am. B 14, 2268 (1997). [CrossRef]
  21. P. F. Bordui, R. G. Norwood, D. H. Jundt, and M. M. Fejer, "Preparation and characterization of off-congruent lithium niobate crystals," J. Appl. Phys. 71, 875-879 (1992). [CrossRef]
  22. L. Tian, V. Gopalan, and L. Galambos, "Domain reversal in stoichiometric LiTaO3 prepared by vapor transport equilibration," Appl. Phys. Lett. 85, 4445-4447 (2004). [CrossRef]
  23. I. Shoji, A. Arai, M. Takeda, S. Nakajima, A. Neduka, R. Ito, and Y. Furukawa, "Accurate measurement of second-order nonlinear-optical coefficients of near-stoichiometric LiNbO3," In Technical Digest of Advanced Solid-State Photonics 2006 (ASSP2006), MB24, Lake Tahoe, Nevada, USA (Jan. 29 - Feb. 1, 2006).
  24. Y. Furukawa, F. Nitanda, M. Sato, S. Makio, and K. Ito, "Optical damage resistance and transparency of MgO-doped LiTaO3 single crystals for SHG devices," Proc. SPIE 1863, 164-169 (1993). [CrossRef]
  25. F. Nitanda, Y. Furukawa, S. Makio, M. Sato, and K. Ito, "Increased Optical Damage Resistance and Transparency in MgO-Doped LiTaO3 Single Crystals," Jpn. J. Appl. Phys. 34, 1546-1549 (1995). [CrossRef]
  26. Y. Sato, and T. Taira, "The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-onedimensional flash method," Opt. Express 14, 10528-10536 (2006). [CrossRef] [PubMed]
  27. K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, "Electric-field poling in Mg-doped LiNbO3," J. Appl. Phys. 96, 6585-6590 (2004). [CrossRef]
  28. H. Ishizuki, and T. Taira, "Study on the field-poling dynamics in Mg-doped LiNbO3 and LiTaO3," In Technical Digest of Nonlinear Optics 2007 (NLO2007), WE35, Kona, Hawaii, USA (July 30 - Aug. 3, 2007).
  29. K. S. Abedin, and H. Ito, "Temperature-dependent dispersion relation of ferroelectric lithium tantalate," J. Appl. Phys. 80, 6561-6563 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited