OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 16977–16983

Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms

R. A. Williams, J. D. Pillet, S. Al-Assam, B. Fletcher, M. Shotter, and C. J. Foot  »View Author Affiliations

Optics Express, Vol. 16, Issue 21, pp. 16977-16983 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (177 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a novel experimental arrangement which can rotate a 2D optical lattice at frequencies up to several kilohertz. Ultracold atoms in such a rotating lattice can be used for the direct quantum simulation of strongly correlated systems under large effective magnetic fields, allowing investigation of phenomena such as the fractional quantum Hall effect. Our arrangement also allows the periodicity of a 2D optical lattice to be varied dynamically, producing a 2D accordion lattice.

© 2008 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.7010) Atomic and molecular physics : Laser trapping

ToC Category:
Atomic and Molecular Physics

Original Manuscript: September 2, 2008
Revised Manuscript: October 7, 2008
Manuscript Accepted: October 7, 2008
Published: October 9, 2008

R. A. Williams, J. D. Pillet, S. Al-Assam, B. Fletcher, M. Shotter, and C. J. Foot, "Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms," Opt. Express 16, 16977-16983 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(de), and U . Sen, "Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond," Adv. Phys. 56, 243-379 (2007). [CrossRef]
  2. J. K. Jain, Composite Fermions (OUP, 2007). [CrossRef]
  3. S. Viefers, "Quantum Hall physics in rotating Bose-Einstein condensates," J. Phys.: Condens. Matter 20,123202.1-123202.14 (2008). [CrossRef]
  4. A. S. Sorenson, E. Demler, and M. D. Lukin, "Fractional Quantum Hall States of Atoms in Optical Lattices," Phys. Rev. Lett. 94, 086803 (2005). [CrossRef]
  5. R. N. Palmer and D. Jaksch, "High field fractional quantum Hall effect in optical lattices," Phys. Rev. Lett. 96, 180407 (2006). [CrossRef] [PubMed]
  6. R. Bhat, M. Kramer, J. Cooper, and M. J. Holland, "Hall effects in Bose-Einstein condensates in a rotating optical lattice," Phys. Rev. A 76, 043601 (2007). [CrossRef]
  7. D. Jaksch and P. Zoller, "Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms," New J. Phys.  5, 56.1-56.11 (2003). [CrossRef]
  8. M. Polini, R. Fazio, A. H. MacDonald and M. P. Tosi, "Realization of Fully Frustrated Josephson Junction Arrays with Cold Atoms," Phys. Rev. Lett. 95, 010401 (2005) [CrossRef] [PubMed]
  9. K. Kasamatsu, "Uniformly frustrated bosonic Josephson junction arrays," arXiv:0806.2012
  10. S. Tung, V. Schweikhard, and E. A. Cornell, "Observation of Vortex Pinning in Bose-Einstein Condensates," Phys. Rev. Lett. 97, 240402 (2006). [CrossRef]
  11. K. Kasamatsu and M. Tsubota, "Dynamical vortex phases in a Bose-Einstein condensate driven by a rotating optical lattice," Phys. Rev. Lett. 97, 240404 (2006). [CrossRef]
  12. J. H. Huckans, "Optical Lattices and Quantum degenerate 87Rb in reduced dimensions," PhD thesis, University of Maryland (2006).
  13. L. Fallani, C. Fort, J. E. Lye, and M. Inguscio, "Bose-Einstein condensate in an optical lattice with tunable spacing: transport and static properties," Opt. Express 13, 4303-4313 (2005). [CrossRef] [PubMed]
  14. T. C. Li, H. Kelkar, D. Medellin, and M. G. Raizen, "Real-time control of the periodicity of a standing wave: an optical accordion," Opt. Express 16, 5465-5470 (2008). [CrossRef] [PubMed]
  15. M. Greiner, O. Mandel, T. Essingler, T. W. H¨ansch and I. Bloch, "Quantum phase transition from a superfluid to a Mott insulator transition in a gas of ultracold atoms," Nature 415, 39-44 (2002).
  16. D. Jaksch, "Optical Lattices, Ultracold Atoms and Quantum Information Processing," Contemp. Phys. 45, 367-381 (2004). [CrossRef]
  17. B. E. A Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991) pp. 136-139.
  18. M. Born and E. Wolf, Principles of Optics, 7th Edition (CUP, 1999) pp. 178-180.
  19. N. Schlosser, G. Reymond, I. Protsenko and P. Grangier, "Sub-poissonian loading of single atoms in a microscopic dipole trap," Nature 411, 1024-1027 (2001). [CrossRef] [PubMed]
  20. S. K. Schnelle, E. D. van Ooijen, M. J. Davis, N. R. Heckenberg and H. Rubinsztein-Dunlop, "Versatile twodimensional potentials for ultracold atoms," Opt. Express 16, 1405-1412 (2008). [CrossRef] [PubMed]
  21. G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, "Fractionation of polydisperse colloid with acoustooptically generated potential energy landscapes," Opt. Lett. 32, 1144-1146 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1851 KB)     
» Media 2: MOV (1889 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited