OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 21 — Oct. 13, 2008
  • pp: 17060–17069

Fast and simple characterization of a photon pair source

F. Bussières, J. A. Slater, N. Godbout, and W. Tittel  »View Author Affiliations

Optics Express, Vol. 16, Issue 21, pp. 17060-17069 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an exact model of the detection statistics of a probabilistic source of photon pairs from which a fast, simple and precise method to measure the source’s brightness and photon channel transmissions is demonstrated. We measure such properties for a source based on spontaneous parametric downconversion in a periodically poled LiNbO3 crystal producing pairs at 810 and 1550 nm wavelengths. We further validate the model by comparing the predicted and measured values for the g(2) (0) of a heralded single photon source over a wide range of the brightness. Our model is of particular use for monitoring and tuning the brightness on demand as required for various quantum communication applications. We comment on its applicability to sources involving spectral and/or spatial filtering.

© 2008 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics
(190.4223) Nonlinear optics : Nonlinear wave mixing
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: August 19, 2008
Revised Manuscript: September 24, 2008
Manuscript Accepted: September 28, 2008
Published: October 10, 2008

F. Bussières, J. A. Slater, N. Godbout, and W. Tittel, "Fast and simple characterization of a photon pair source," Opt. Express 16, 17060-17069 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of the IEEE International Conference on Computers, Systems & Signal Processing (Institute of Electrical and Electronics Engineers, Bangalore, India, 1984), pp. 175-179.
  2. A. Ekert, "Quantum Cryptography Based on Bell�??s Theorem," Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
  3. H.-J. Briegel, W. D¨ur, J. I. Cirac and P. Zoller, "Quantum Repeaters: the Role of Imperfect Local Operations in Quantum Communication," Phys. Rev. Lett. 81, 5932-5935 (1998). [CrossRef]
  4. L.-M. Duan, M. D. Lukin, J. I. Cirac and P. Zoller, "Long-distance quantum communication with atomic ensembles and linear optics," Nature (London) 414413-418 (2001). [CrossRef] [PubMed]
  5. D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Production of Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970). [CrossRef]
  6. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Phot. Technol. Lett. 14, 983-985 (2002). [CrossRef]
  7. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, "Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles," Nature (London) 423, 731-734 (2003). [CrossRef] [PubMed]
  8. J. Simon, H. Tanji, J. K. Thompson, and V. Vuletic, "Interfacing Collective Atomic Excitations and Single Photons," Phys. Rev. Lett. 98183601 (2007). [CrossRef] [PubMed]
  9. W. Tittel and G. Weihs, "Photonic Entanglement for Fundamental Tests and Quantum Communication," Quantum Inf. and Comp. 1, 3-56 (2001).
  10. C. K. Hong and L. Mandel, "Experimental realization of a localized one-photon state," Phys. Rev. Lett. 56, 58-60 (1986). [CrossRef] [PubMed]
  11. X. Ma, C.-H. Fred Fung, and H.-K. Lo, "Quantum key distribution with entangled photon sources," Phys. Rev. A 76, 012307 (2007). [CrossRef]
  12. E. Waks, C. Santori, and Y. Yamamoto, "Security aspects of quantum key distribution with sub-Poisson light," Phys. Rev. A 66, 042315 (2002). [CrossRef]
  13. Q. W. Chen, G. Xavier, M. Swillo, T. Zhang, S. Sauge, M. Tengner, Z.-F. Han, G.-C. Guo, and A. Karlsson, "Experimental Decoy-State Quantum Key Distribution with a Sub-Poissionian Heralded Single-Photon Source," Phys. Rev. Lett. 100, 090501 (2008). [CrossRef] [PubMed]
  14. Y. Adachi,T. Yamamoto, M. Koashi, and N. Imoto, "Simple and Efficient Quantum Key Distribution with Parametric Down-Conversion," Phys. Rev. Lett. 99, 180503 (2007). [CrossRef] [PubMed]
  15. W. Mauerer and C. Silberhorn, "Quantum key distribution with passive decoy state selection," Phys. Rev. A 75, 050305(R) (2007). [CrossRef]
  16. H. de Riedmatten, I. Marcikic, W. Tittel, H. Zbinden, and N. Gisin, "Quantum interference with photon pairs created in spatially separated sources," Phys. Rev. A 67, 022301 (2003). [CrossRef]
  17. S. Takeuchi, R. Okamoto, and K. Sasaki, "High-Yield Single-Photon Source Using Gated Spontaneous Parametric Downconversion," Appl. Opt. 43, 5708-5711 (2004). [CrossRef] [PubMed]
  18. R. Okamoto, S. Takeuchi, and K. Sasaki, "Detailed analysis of a single-photon source using gated spontaneous parametric downconversion," J. Opt. Soc. Am. B 22, 2393-2401 (2005). [CrossRef]
  19. M. Tengner and D. Ljunggren, "Characterization of an asynchronous source of heralded single photons generated at a wavelength of 1550 nm," arXiv:0706.2985v1 [quant-ph] (2007).
  20. L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge University Press, 1995).
  21. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, "Time-bin entangled qubits for quantum communication created by femtosecond pulses," Phys. Rev. A 66, 062308 (2002). [CrossRef]
  22. H. de Riedmatten, V. Scarani, I. Marcikic, A. Ac�??ın,W. Tittel, H. Zbinden, and N. Gisin, "Two independent photon pairs versus four-photon entangled states in parametric down conversion," J. Mod. Opt. 51, 1637-1649 (2004).
  23. R. Hanbury Brown, and R. Q. Twiss, "A Test of a New Type of Stellar Interferometer on Sirius," Nature (London) 178, 1046-1048 (1956). [CrossRef]
  24. For a Thermal distribution the g(2)(0) is higher by a factor of 2: g(2)(0) = 2�??(2�??|H). In the case of spectral and/or spatial correlations with a Poissonian source, as discussed in section 4, g(2)(0) =�??(2/c�??|H).
  25. M. Zukowski, A. Zeilinger, and H. Weinfurter, "Entangling Photons Radiated by Independent Pulsed Sources," in Annals of the New York Academy of Sciences, D. M. Greenberger, A. Zeilinger, ed. (New York, 1995), pp. 91- 102 [CrossRef]
  26. J. D. Franson, "Nonlocal cancellation of dispersion," Phys. Rev. A 45, 3126-3132 (1992). [CrossRef] [PubMed]
  27. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U�??Ren, C. Silberhorn, and I. A.Walmsley, "Heralded Generation of Ultrafast Single Photons in Pure Quantum States," Phys. Rev. Lett. 100, 133601 (2008). [CrossRef] [PubMed]
  28. C. H. Bennett, G. Brassard, and J.-M. Robert, "Privacy amplification by public discussion," SIAM J. Comput. 17, 210-229 (1988). [CrossRef]
  29. C. H. Bennett, G. Brassard, C. Cr�??epeau, and U. M. Maurer, "Generalized privacy amplification," IEEE Trans. Inf. Theory 41, 1915-1923 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited