OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 17227–17236

Optical properties of photonic crystal fiber with integral micron-sized Ge wire

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. St.J. Russell  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 17227-17236 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (2170 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using a selective hole closure technique, individual hollow channels in silica-air photonic crystal fibers are filled with pure Ge by pumping in molten material at high pressure. The smallest channels filled so far are 600 nm in diameter, which is 10× smaller than in previous work. Electrical conductivity and micro-Raman measurements indicate that the resulting cm-long wires have a high degree of crystallinity. Optical transmission spectra are measured in a sample with a single wire placed adjacent to the core of an endlessly single-mode photonic crystal fiber. This renders the fiber birefringent, as well as causing strongly polarization-dependent transmission losses, with extinction ratios as high as 30 dB in the visible. In the IR, anti-crossings between the glass-core mode and resonances on the high index Ge wire create a series of clear dips in the spectrum transmitted through the fiber. The measurements agree closely with the results of finite-element simulations in which the wavelength dependence of the dielectric constants is taken fully into account. A toy model based on a multilayer structure is used to help interpret the results. Finally, the temperature dependence of the anti-crossing wavelengths is measured, the preliminary results suggesting that the structure might form the basis of a compact optical thermometer. Since Ge provides electrical conductance together with low-loss guidance in the mid-IR, Ge-filled PCF seems likely to lead to new kinds of in-fiber detector and sensor, as well as having potential uses in ultra-low-threshold nonlinear optical devices.

© 2008 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(160.4236) Materials : Nanomaterials
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Photonic Crystal Fibers

Original Manuscript: June 19, 2008
Revised Manuscript: August 25, 2008
Manuscript Accepted: October 10, 2008
Published: October 13, 2008

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. Russell, "Optical properties of photonic crystal fiber with integral micron-sized Ge wire," Opt. Express 16, 17227-17236 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. St.J. Russell, "Photonic-crystal fibers," IEEE J. Lightwave Technol. 24, 4729-4749 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-24-12-4729. [CrossRef]
  2. T. A. Birks, J. C. Knight, and P. St.J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-13-961. [CrossRef] [PubMed]
  3. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St.J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2864. [CrossRef] [PubMed]
  4. G. Kakarantzas, T. A. Birks, and P. St.J. Russell, "Structural long-period gratings in photonic crystal fibers," Opt. Lett. 27, 1013-1015 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-12-1013. [CrossRef]
  5. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings," IEEE Photon. Technol. Lett. 12, 495-497 (2000). doi: 10.1109/68.841264 [CrossRef]
  6. T. R. Wolinski, S. Ertman, P. Lesiak, A. W. Domanski, A. Czapla, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, "Photonic liquid crystal fibers - a new challenge for fiber optics and liquid crystals photonics," Opto-Electron. Rev. 14, 329-334 (2006). [CrossRef]
  7. X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, "Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers," Opt. Express 15, 16270-16278 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-24-16270. [CrossRef] [PubMed]
  8. J. Hou, D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, "Metallic mode confinement in microstructured fibres," Opt. Express 16, 5983-5990 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-5983. [CrossRef] [PubMed]
  9. D. J. Won, M. O. Ramirez, H. Kang, V. Gopalan, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, "All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers," Appl. Phys. Lett. 91, 161112 (2007), http://link.aip.org/link/?APPLAB/91/161112/1. [CrossRef]
  10. M. A. Schmidt, L. N. P. Sempere, H. K. Tyagi, C. G. Poulton, and P. St.J. Russell, "Waveguiding and plasmon resonances in two-dimensional photonic lattices of gold and silver nanowires," Phys. Rev. B 77, 033417 (2008), http://link.aps.org/abstract/PRB/v77/e033417. [CrossRef]
  11. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. N. Prill Sempere, and P. St.J. Russell, "Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber," Appl. Phys. Lett. 93, 111102 (2008), http://link.aip.org/link/?APPLAB/93/111102/1.
  12. M. A. Schmidt, H. K. Tyagi, L. N. Prill Sempere, and P. St.J. Russell, "Polarization properties of PCF with Ge-nanowire," in CLEO (Optical Society of America, San Jose, 2008), http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-CFO4.
  13. E. M. Conwell, "Properties of silicon and germanium," PROC. of the I.R.E. 40, 1327-1337 (1952). [CrossRef]
  14. J. Y. W. Seto, "The electrical properties of polycrystalline silicon films," J. Appl. Phys. 46, 5247-5254 (1975), http://link.aip.org/link/?JAPIAU/46/5247/1. [CrossRef]
  15. C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007), http://link.aip.org/link/?APPLAB/90/132110/1. [CrossRef]
  16. J. H. ParkerJr., D. W. Feldman, and M. Ashkin, "Raman scattering by silicon and germanium," Phys. Rev. 155, 712-714 (1967), http://link.aps.org/abstract/PR/v155/p712. [CrossRef]
  17. J. S. Lannin, N. Maley, and S. T. Kshirsagar, "Raman scattering and short range order in amorphous germanium," Solid State Commun. 53, 939-942 (1985). doi: 10.1016/0038-1098(85)90464-8 [CrossRef]
  18. N. Maley and J. S. Lannin, "Raman coupling-parameter variation in amorphous germanium," Phys. Rev. B 35, 2456-2459 (1987), http://link.aps.org/abstract/PRB/v35/p2456. [CrossRef]
  19. H. R. Philipp and E. A. Taft, "Optical constants of germanium in the region 1 to 10 eV," Phys. Rev. 113, 1002-1005 (1959), http://link.aps.org/abstract/PR/v113/p1002. [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007).
  21. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1998).
  22. L. Vina, S. Logothetidis, and M. Cardona, "Temperature dependence of the dielectric function of germanium," Phys. Rev. B 30, 1979-1991 (1984), http://link.aps.org/abstract/PRB/v30/p1979. [CrossRef]
  23. G. K. Teal and J. B. Little, "Growth of Ge single crystals," Phys. Rev. 78, 647 (1950).
  24. J. Jung, H. Nam, B. H. Lee, J. O. Byun, and N. S Kim, "Fiber Bragg grating temperature sensor with controllable sensitivity," Appl. Opt. 38, 2752-2754 (1999), http://www.opticsinfobase.org/abstract.cfm?URI=ao-38-13-2752. [CrossRef]
  25. V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-9-692. [CrossRef] [PubMed]
  26. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, "High-temperature stability of long-period fiber gratings produced using an electric arc," J. Lightwave Technol. 19, 1574-1579 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=JLT-19-10-1574. [CrossRef]
  27. S. W. James and R. P. Tatam, "Optical fibre long-period grating sensors: characteristics and applications," Meas. Sci. Technol. 14, R49-R61 (2003). doi: 10.1088/0957-0233/14/5/201 [CrossRef]
  28. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-13-7901. [CrossRef] [PubMed]
  29. P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-14-2103. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited