OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 17269–17275

Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires

Lei Kang, Qian Zhao, Hongjie Zhao, and Ji Zhou  »View Author Affiliations


Optics Express, Vol. 16, Issue 22, pp. 17269-17275 (2008)
http://dx.doi.org/10.1364/OE.16.017269


View Full Text Article

Enhanced HTML    Acrobat PDF (188 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally demonstrate a magnetically tunable left-handed metamaterial by introducing yttrium iron garnet rods into SRRs/wires array. It shows that the left-handed passband of the metamaterial can be continuously and reversibly adjusted by external dc applied magnetic fields. Retrieved effective parameters based on simulated scattering parameters show that tunable effective refraction index can be conveniently realized in a broad frequency range by changing the applied magnetic field. Different from those tuned by controlling the capacitance of equivalent LC circuit of SRR, this metamaterial is based on a mechanism of magnetically tuning the inductance via the active ambient effective permeability.

© 2008 Optical Society of America

OCIS Codes
(000.0000) General : General
(350.4010) Other areas of optics : Microwaves

ToC Category:
Metamaterials

History
Original Manuscript: August 13, 2008
Revised Manuscript: October 5, 2008
Manuscript Accepted: October 7, 2008
Published: October 13, 2008

Citation
Lei Kang, Qian Zhao, Hongjie Zhao, and Ji Zhou, "Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires," Opt. Express 16, 17269-17275 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17269


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics USPEKI 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and I. Yongs, "Extremely low frequency plasmons in metallic mesostructures, " Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314,977-980 (2006). [CrossRef] [PubMed]
  8. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006). [CrossRef] [PubMed]
  9. X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, "Defect effect of split ring resonators in left-handed metamaterials," Phys. Lett. A 346, 87-91 (2005). [CrossRef]
  10. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006). [CrossRef] [PubMed]
  11. H. Chen, Bae-Ian Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006). [CrossRef]
  12. I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, "Tunable split-ring resonators for nonlinear negative-index metamaterials," Opt. Express 14, 9344-9349 (2006). [CrossRef] [PubMed]
  13. Q. Zhao, L. Kang, B. Du, B. Li, and J. Zhou, "Electrically tunable negative permeability metamaterials based on nematic liquid crystals," Appl. Phys. Lett. 90, 011112 (2007). [CrossRef]
  14. D. H. Werner, Do-Hoon Kwon, and Iam-Choon Khoo, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Opt. Express 15, 3342-3347 (2007). [CrossRef] [PubMed]
  15. A. Degiron, J. J. Mock, and D. R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Opt. Express 15, 1115-1127 (2007). [CrossRef] [PubMed]
  16. E. Ozbay, K. Aydin, S. Butun, K. Kolodziejak, and D. Pawlak, "Ferroelectric based tuneable SRR based metamaterial for microwave applications," in Proceedings of the 37th European Microwave Conference (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 497-499.
  17. F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. P. Zhao, J. Zhou, and D. Lippens, "Magnetic control of negative permeability metamaterials based on liquid crystals," Appl. Phys. Lett. 92, 193104 (2008). [CrossRef]
  18. L. Kang, Q. Zhao, H. Zhao, and J. Zhou, "Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods," Opt. Express 16, 8825-8834 (2008). [CrossRef] [PubMed]
  19. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005). [CrossRef]
  20. A. L. Efros, "Comment II on Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E 70, 048602 (2004). [CrossRef]
  21. T. Koschny, P. Markos, D. R. Smith, and C. M. Soukoulis, "Reply to comments on "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,"Phys. Rev. E 70, 048603 (2004). [CrossRef]
  22. E. Saenz, P. M. T. Ikonen, R. Gonzalo, and S. A. Tretyakov, "On the definition of effective permittivity and permeability for thin composite layers," J. Appl. Phys. 101, 114910 (2007). [CrossRef]
  23. F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, "Simulations of ferrite-dielectric-wire composite negative index materials," Phys. Rev. Lett. 99, 057202 (2007). [CrossRef] [PubMed]
  24. H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, "Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires," Appl. Phys. Lett. 91, 131107 (2007). [CrossRef]
  25. V. B. Bregara and M. Pavlin, "Effective-susceptibility tensor for a composite with ferromagnetic inclusions: enhancement of effective-media theory and alternative ferromagnetic approach," J. Appl. Phys. 95, 6289-6293 (2004). [CrossRef]
  26. V. B. Bregara, "Effective-medium approach to the magnetic susceptibility of compositeswith ferromagnetic inclusions," Phys. Rev. B 71, 174418 (2005). [CrossRef]
  27. G. W. Milton, "Bounds on the complex permettivity of a two-component composite material," J. Appl. Phys. 52, 5286-5293 (1981). [CrossRef]
  28. B. Lax and K. J. Button, Microwave ferrites and ferrimagnetics (McGraw-Hill, New York, 1962).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited