OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 17276–17281

Scalable nano-particle assembly by efficient light-induced concentration and fusion

Benjamin K. Wilson, Mike Hegg, Xiaoyu Miao, Guozhong Cao, and Lih Y. Lin  »View Author Affiliations


Optics Express, Vol. 16, Issue 22, pp. 17276-17281 (2008)
http://dx.doi.org/10.1364/OE.16.017276


View Full Text Article

Enhanced HTML    Acrobat PDF (924 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Avalanche concentration, a rapid, long-range accumulation of particles around a laser spot in a liquid sample, is demonstrated and characterized for various nanoparticles (NPs). The effect is driven by a convective flow in the sample, caused by efficient heating of NPs with high absorption efficiencies. Several types of concentration behavior were observed and characterized. Control of optical power and initial particle density was found to be effective in determining the assembly process. VO2 nanowires, carbon nanotube (CNT), and quantum dot (QD) electrode gap bridges were assembled with a variety of sizes and geometries to show the utility of the method for nano-assembly. Bridges were assembled from as many as thousands to as few as one NP and were found to form solid electrical contact between the electrodes, as verified by measuring the current - voltage (I-V) characteristic.

© 2008 Optical Society of America

OCIS Codes
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: August 18, 2008
Revised Manuscript: October 1, 2008
Manuscript Accepted: October 4, 2008
Published: October 13, 2008

Citation
Benjamin K. Wilson, Mike Hegg, Xiaoyu Miao, Guozhong Cao, and Lih Y. Lin, "Scalable nano-particle assembly by efficient light-induced concentration and fusion," Opt. Express 16, 17276-17281 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17276


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Krupke, F. Hennrich, H. B. Weber, M. M. Kappes, and H. v. Lohneysen, "Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using AC-dielectrophoresis," Nano Lett. 3, 1019-1023 (2003). [CrossRef]
  2. L. Dong, V. Chirayos, J. Bush, J. Jiao, V. M. Dubin, R. V. Chebian, Y. Ono, J. John, F. Conley, and B. D. Ulrich, "Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties," J. Phys. Chem. B 109, 13148-13153 (2005). [CrossRef]
  3. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang, and J. Liphardt, "Optical trapping and integration of semiconductor nanowire assemblies in water," Nat. Mater. 5, 97-101 (2006). [CrossRef] [PubMed]
  4. J. M. Tour, L. Cheng, D. P. Nackashi, Y. Yao, A. K. Flatt, S. K. S. Angelo, T. E. Mallouk, and P. D. Franzon, "Nanocell electronic memories," J. Am. Chem. Soc. 125, 13279-13283 (2003). [CrossRef] [PubMed]
  5. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, "Ultrasensitive solution-cast quantum dot photodetectors," Nature 442, 180-183 (2006). [CrossRef] [PubMed]
  6. J. Liu and Y. Lu, "A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles" J. Am. Chem. Soc. 125, 6642 (2003). [CrossRef] [PubMed]
  7. S. Y. Park, A. K. R. Lytton-Jean, B. Lee, S. Weigand, G. C. Schatz, and C. A. Mirkin, "DNA-programmable nanoparticle crystallization," Nature 451, 553-556 (2008). [CrossRef] [PubMed]
  8. S. Y. Park, J.-S. Lee, D. Georganopoulou, C. A. Mirkin, and G. C. Schatz, "Structures of DNA-Linked Nanoparticle Aggregates," J. Phys. Chem. B 110, 12673-12681 (2006). [CrossRef] [PubMed]
  9. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B 73, 085417 (2006). [CrossRef]
  10. K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, "Plasmon resonance-based optical trapping of single and multiple Au nanoparticles," Opt. Express 15, 12017-12029 (2007). [CrossRef] [PubMed]
  11. S. Duhr and D. Braun, "Two-dimensional colloidal crystals formed by thermophoresis and convection" Appl. Phys. Lett. 86, 131921 (2005). [CrossRef]
  12. D. P. O�??Neala, L. R. Hirschb, N. J. Halasc, J. D. Paynea, and J. L. Westb, "Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles," Cancer Lett. 209, 171-176 (2004). [CrossRef]
  13. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  14. A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, "Enhanced optical forces between coupled resonant metal nanoparticles," Opt. Lett. 32 (2007). [CrossRef] [PubMed]
  15. M. Eagleson, Concise Encyclopedia Chemistry (Walter de Gruyter, 1994).
  16. W. A. Goddard, D. W. Brenner, and S. E. Lyshevski, Handbook of Nanoscience, Engineering, and Technology (CRC Press, 2002).
  17. H. Kakiuchida, P. Jin, S. Nakao, and M. Tazawa, "Optical properties of vanadium dioxide film during semiconductive-metallic phase transition," Jpn. J. Appl. Phys. 46, L113-L116 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited