OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 17366–17382

Impact of atmospheric boundary layer turbulent temperature fluctuations on remote detection of vapors by passive infrared spectroscopy

Agustin Ifarraguerri and Avishai Ben-David  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 17366-17382 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A computational model to simulate the effects of boundary layer isotropic atmospheric turbulence on the radiative transfer process is presented. We perform a large number of simulations with stochastic ambient conditions to estimate the statistics necessary to predict the detection limit of a given trace gas. We find that the radiance and transmittance variability are primarily determined by the optical depth of the emitting atmosphere, and that the relative variability of the transmittance is an order of magnitude smaller than that of the radiance. We estimate that the atmospheric detection limit of a DMMP vapor cloud at 30 meters altitude for a ground-based observer ranges from 3.5 to 12 ppbm, depending on the horizontal range to the cloud. Addition of uncorrelated detector noise has a disproportionate effect on the detection limit over the spectrally correlated turbulence noise. These calculations appear to be the first predictions of vapor detection limits that explicitly incorporate the effects of turbulence.

© 2008 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1320) Atmospheric and oceanic optics : Atmospheric transmittance
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(300.6340) Spectroscopy : Spectroscopy, infrared
(010.5620) Atmospheric and oceanic optics : Radiative transfer
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and oceanic optics

Original Manuscript: April 28, 2008
Revised Manuscript: September 14, 2008
Manuscript Accepted: October 2, 2008
Published: October 14, 2008

Agustin Ifarraguerri and Avishai Ben-David, "Impact of atmospheric boundary layer turbulent temperature fluctuations on remote detection of vapors by passive infrared spectroscopy," Opt. Express 16, 17366-17382 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. R. Schildkraut, R. F. Connors, A. Ben-David, and A. Ifarraguerri, "An ultra-high sensitivity passive FTIR sensor (HiSPEC) and initial field results," Proc. SPIE 4574, 8-25 (2001).
  2. D. M. Sheen, N. B. Gallagher, S. W. Sharpe, K. K. Anderson, and J. F. Schultz, "Impact of background and atmospheric variability on infrared hyperspectral chemical detection sensitivity," Proc. SPIE 5093, 218-229 (2003). [CrossRef]
  3. J. H. Gruninger, J. W. Duff, J. H. Brown, and W. A. Blumberg, "Radiation transport effects and the interpretation of infrared images of gravity waves and turbulence," Proc SPIE 3495, 122-135 (1998). [CrossRef]
  4. P. Ciotti, D. Solimini, and P. Basili, "Spectra of Atmospheric Variables as Deduced from Ground Based Radiometry," IEEE Trans. on Geosci.Elec. GE-17, 68-77 (1979) [CrossRef]
  5. A. Ben-David, S. K. Holland, G. Laufer, and J. D. Baker, "Measurements of atmospheric brightness temperature fluctuations and their implications on passive remote sensing," Opt. Express 13, 8781-8800 (2005). [CrossRef] [PubMed]
  6. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).
  7. R. R. Beland, "Propagation through atmospheric optical turbulence," in Infrared & Electro-Optical Systems Handbook, Volume 2: Atmospheric Propagation of Radiation, F. G. Smith, ed., (SPIE, 1999).
  8. G. I. Taylor, "The spectrum of turbulence," Proc. R. Soc. London A 164, (1938).
  9. R. S. Lawrence, G. R. Ochs, and S. F. Clifford, "Measurements of atmospheric turbulence relevant to optical propagation," J. Opt. Soc. of Am. 609, 826-830 (1970). [CrossRef]
  10. N. S. Kopeika, A System Engineering Approach to Imaging (SPIE, 1998).
  11. M. C. Roggerman and B. M. Welsh, Imaging Through Turbulence (CRC 1996).
  12. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, "MODTRAN5: A Reformulated Atmospheric Band Model with Auxiliary Species and Practical Multiple Scattering Options," Proc SPIE 5655, 88-95 (2005). [CrossRef]
  13. D. F. Flanigan, "Prediction of the limits of detection of hazardous vapors by passive infrared with the use of MODTRAN," Appl. Opt. 35, 6090-6098 (1996). [CrossRef] [PubMed]
  14. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1997).
  15. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Rhoderick, and P. A. Johnson, "Gas-phase databases for quantitative infrared spectroscopy," Appl. Spectrosc. 58, 1452-1461 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited