OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 17400–17409

Ultra-high quality factor optical resonators based on semiconductor nanowires

Yinan Zhang and Marko Lončar  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 17400-17409 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (435 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a platform to achieve ultra-high Quality factor (Q) optical resonators based on semiconductor nanowires. By defining one-dimensional photonic crystal at nanowire ends and engineering the microcavity pattern, cavities with Q of 3×105 and mode volume smaller than 0.2(λ/n)3 have been designed. This represents an increase of almost three orders of magnitude over the Quality factor of an as-grown nanowire. Our cavities are well-suited for the realization of nanowire-based low-threshold lasers, single-photon sources and quantum optical devices that operate in the strong-coupling limit.

© 2008 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(270.0270) Quantum optics : Quantum optics

ToC Category:
Optical Devices

Original Manuscript: August 13, 2008
Revised Manuscript: September 18, 2008
Manuscript Accepted: October 8, 2008
Published: October 15, 2008

Yinan Zhang and Marko Loncar, "Ultra-high quality factor optical resonators based on semiconductor nanowires," Opt. Express 16, 17400-17409 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science 292, 1897-1899 (2001). [CrossRef] [PubMed]
  2. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven laser," Nature 421, 241-245 (2003). [CrossRef] [PubMed]
  3. R. Agarwal, C. J. Barrelet, and C. M. Lieber, "Lasing in single cadmium sulfide nanowire optical cavities," Nano. Lett. 5, 917-920 (2005). [CrossRef] [PubMed]
  4. S. Gradecek, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, "GaN nanowire lasers with low lasing threshold," Appl. Phys. Lett. 87, 173111 (2005). [CrossRef]
  5. J. M. Bao, M. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, "Broadband ZnO single-nanowire light-emitting diode," Nano. Lett. 6, 1719-1722 (2006). [CrossRef] [PubMed]
  6. J. C. Johnson, H. Yan, P. Yang, and R. J. Saykally, "Optical cavity effects in ZnO nanowire lasers and waveguides," J. Phys. Chem. B 107, 8816-8828 (2003). [CrossRef]
  7. A. V. Maslov and C. Z. Ning, "Reflection of guided modes in a semiconductor nanowire laser," Appl. Phys. Lett. 83, 1237-1239 (2003). [CrossRef]
  8. Z. Y. Li and K. M. Ho, "Bloch mode reflection and lasing threshold in semiconductor nanowire laser arrays," Phys. Rev. B 71, 045315 (2005). [CrossRef]
  9. M. Q. Wang, Y. Z. Huang, Q. Chen, and Z. P. Cai, "Analysis of mode quality factors and mode reflectivities for nanowire cavity by FDTD technique," IEEE J. Quantum Electron. 42, 146-151 (2006). [CrossRef]
  10. Y. Ding, J. Motohisa, B. Hua, S. Hara, and T. Fukui, "Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy," Nano. Lett. 7, 3598-3602 (2007). [CrossRef]
  11. A. V. Maslov and C. Z. Ning, "Modal gain in a semiconductor nanowire laser with anisotropic bandstructure," IEEE J. Quantum Electron. 40, 1389-1397 (2004). [CrossRef]
  12. C. Barrelet, J. Bao, M. Loncar, H. G. Park, F. Capasso, and C. M. Lieber, "Hybrid single-nanowire photonic crystal and microresonator structures," Nano. Lett. 6, 11-15 (2006). [CrossRef] [PubMed]
  13. O. L. Muskens, J. Treffers, M. Forcales, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, "Modification of the photoluminescence anisotropy of semiconductor nanowires by coupling to surface plasmon polaritons," Opt. Lett. 32, 2097-2099 (2007). [CrossRef] [PubMed]
  14. H. G. Park, F. Qian, C. J. Barrelet, and Y. Li, "Microstadium single-nanowire laser," Appl. Phys. Lett. 91, 251115 (2007). [CrossRef]
  15. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, "Efficient source of single photons: A single quantum dot in a micropost microcavity," Phys. Rev. Lett. 89, 233602 (2002). [CrossRef] [PubMed]
  16. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000). [CrossRef] [PubMed]
  17. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystals," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  18. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature 415, 617-620 (2002). [CrossRef] [PubMed]
  19. M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, "One-dimensional heterostructures in semiconductor nanowhiskers," Appl. Phys. Lett. 80, 1058-1060 (2002). [CrossRef]
  20. N. Panev, A. I. Persson, N. Skold, and L. Samuelson, "Sharp exciton emission from single InAs quantum dots in GaAs nanowires," Appl. Phys. Lett. 83, 2238-2240 (2003). [CrossRef]
  21. L. Samuelson, M. T. Bjork, K. Deppert, M. Larsson, B. J. Ohlsson, N. Panev, A. I. Persson, N. Skold, C. Thelander, and L. R. Wallenberg, "Semiconductor nanowires for novel one-dimensional devices," Physica E 21, 560-567 (2004). [CrossRef]
  22. M. T. Bjork, C. Thelander, A. E. Hansen, L. E. Jenson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, "Few-electron quantum dots in nanowires," Nano. Lett. 4, 1621-1625 (2004). [CrossRef]
  23. C. P. T. Svensson, W. Seifert, M. W. Larsson, L. R. Wallenberg, J. Stangl, G. Bauer, and L. Samuelson, "Epitaxially grown GaP/ GaAs1-xPx/GaP double heterostructure nanowires for optical applications," Nanotechnology 16, 936-939 (2005). [CrossRef]
  24. M. T. Borgstrom, V. Zwiller, E. Muller, and A. Imamoglu, "Optically bright quantum dots in single nanowires," Nano. Lett. 5, 1439-1443 (2005). [CrossRef] [PubMed]
  25. E. D. Minot, F. Kelkensberg, M. v. Kouwen, J. A. v. Dam, L. P. Kouwenhoven, V. Zwiller, M. T. Borgstrom, O. Wunnicke, M. A. Verheijen, and E. P. A. M. Bakkers, "Single quantum dot nanowire LEDs," Nano. Lett. 7, 367-371 (2007). [CrossRef] [PubMed]
  26. P. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high-Q, small-V microcavities," IEEE J. Quantum Electron. 39, 1430-1438 (2003). [CrossRef]
  27. H. J. Kimble, in Cavity Electrodynamics, P. Berman, ed. (Academic Press, San Diego, 1994).
  28. A. Yariv, Photonics: Optical electronics in modern communications, 6 ed. (Oxford University Press, 2006).
  29. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004). [CrossRef] [PubMed]
  30. M. Palamaru and P. Lalanne, "Photonic crystal waveguides: Out-of-plane losses and adiabatic modal conversion," Appl. Phys. Lett. 78, 1466-1468 (2001). [CrossRef]
  31. C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, "Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities," Opt. Express 13, 245-255 (2005). [CrossRef] [PubMed]
  32. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, "Ultra-high Q/V Fabry-Perot microcavity on SOI substrate," Opt. Express 15, 16090-16096 (2007). [CrossRef] [PubMed]
  33. A. I. Persson, M. T. Bjork, S. Jeppesen, J. B. Wagner, L. R. Wallenberg, and L. Samuelson, "InAs1-xPx nanowires for device engineering," Nano. Lett. 6, 403-407 (2006). [CrossRef] [PubMed]
  34. S. K. Lim, M. J. Tambe, M. M. Brewster, and S. Gradecak, "Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition," Nano. Lett. 8, 1386-1392 (2008). [CrossRef] [PubMed]
  35. M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Opt. Express 16, 11095-11102 (2008). [CrossRef] [PubMed]
  36. T. Asano, B. S. Song, Y. Akahane, and S. Noda, "Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs," IEEE J. Sel. Top. Quantum Electron. 12, 1123-1134 (2006). [CrossRef]
  37. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005). [CrossRef]
  38. Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocavity with Q-factor of similar to 10(9)," J. Lightwave Technol. 26, 1532-1539 (2008). [CrossRef]
  39. D. Englund, I. Fushman, and J. Vuckovic, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961-5975 (2005). [CrossRef] [PubMed]
  40. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002). [CrossRef]
  41. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002). [PubMed]
  42. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, "Vertical-cavity surface-emitting lasers - design, growth, fabrication, characterization," IEEE J. Quantum Electron. 27, 1332-1346 (1991). [CrossRef]
  43. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004). [CrossRef] [PubMed]
  44. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp, and A. Forchel, "AlAs/GaAs micropillar cavities with quality factors exceeding 150,000," Appl. Phys. Lett. 90, 251109 (2007). [CrossRef]
  45. J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998). [CrossRef]
  46. J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, "Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics," Phys. Rev. A 66, 023808 (2002). [CrossRef]
  47. L. Chen and E. Towe, "Photonic band gaps in nanowire superlattices," Appl. Phys. Lett. 87, 10311 (2005).
  48. O. Beyer, I. Nee, F. Havermeyer, and K. Buse, "Holographic recording of Bragg gratings for wavelength division multiplexing in doped and partially polymerized poly(methyl methacrylate)," Appl. Opt. 42, 30-37 (2003). [CrossRef] [PubMed]
  49. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies " Phys. Rev. 69, 681-681 (1946).
  50. T. Baba, "Photonic crystals and microdisk cavities based on GaInAsP-InP system," IEEE J. Quantum Electron. 3, 808-830 (1997). [CrossRef]
  51. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, "Vacuum Rabi splitting in semiconductors," Nature Phys. 2, 81-90 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited