OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 17484–17504

Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate Part I: Simulation

Guan Xu, Daqing Piao, Cameron H. Musgrove, Charles F. Bunting, and Hamid Dehghani  »View Author Affiliations


Optics Express, Vol. 16, Issue 22, pp. 17484-17504 (2008)
http://dx.doi.org/10.1364/OE.16.017484


View Full Text Article

Enhanced HTML    Acrobat PDF (1107 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the feasibility of trans-rectal optical tomography of the prostate using an endo-rectal near-infrared (NIR) applicator that is to be integrated with a trans-rectal ultrasound (TRUS) probe. Integration with TRUS ensures accurate endo-rectal positioning of the NIR applicator and the utility of using TRUS spatial prior information to guide NIR image reconstruction. The prostate NIR image reconstruction is challenging even with the use of spatial prior owing to the anatomic complexity of the imaging domain. A hierarchical reconstruction algorithm is developed that implements cascaded initial-guesses for nested domains. This hierarchical image reconstruction method is then applied to evaluating a number of NIR applicator designs for integration with a sagittal TRUS transducer. A NIR applicator configuration feasible for instrumentation development is proposed that contains one linear array of optodes on each lateral side of the sagittal TRUS transducer. The performance of this NIR applicator is characterized for the recovery of single tumor mimicking lesion as well as dual targets in the prostate. The results suggest a strong feasibility of transrectal prostate imaging by use of the endo-rectal NIR/US probe.

© 2008 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography
(170.7230) Medical optics and biotechnology : Urology

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 8, 2008
Revised Manuscript: October 13, 2008
Manuscript Accepted: October 14, 2008
Published: October 15, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Guan Xu, Daqing Piao, Cameron H. Musgrove, Charles F. Bunting, and Hamid Dehghani, "Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, Part I: Simulation," Opt. Express 16, 17484-17504 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17484


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun, "Cancer statistics, 2007," CA Cancer J. Clin. 57, 43-66 (2007).
  2. T. J. Polascik, J. E. Oesterling, and A. W. Partin, "Prostate specific antigen: a decade of discovery--what we have learned and where we are going," J. Urol. 162, 293-306 (1999). [CrossRef] [PubMed]
  3. G. D. Grossfeld and P. R. Carroll, "Prostate cancer early detection: a clinical perspective," Epidemiol Rev. 23, 173-80 (2001). [CrossRef] [PubMed]
  4. T. A. Stamey, M. Caldwell, J. E. McNeal, R. Nolley, M. Hemenez, and J. Downs, "The prostate specific antigen era in the United States is over for prostate cancer: what happened in the last 20 years?," J. Urol. 172, 1297-1301 (2004). [CrossRef] [PubMed]
  5. C. R. Pound, A. W. Partin, M. A. Eisenberger, D. W. Chan, J. D. Pearson, and P. C. Walsh, "Natural history of progression after PSA elevation following radical prostatectomy," JAMA.  281, 1591-1597 (1999). [CrossRef] [PubMed]
  6. A. C. Loch, A. Bannowsky, L. Baeurle, B. Grabski, B. König, G. Flier, O. Schmitz-Krause, U. Paul, and T. Loch, "Technical and anatomical essentials for transrectal ultrasound of the prostate," World J. Urol. 25, 361-366 (2007). [CrossRef] [PubMed]
  7. A. Bill-Axelson, L. Holmberg, M. Ruutu,  et al. "Radical prostatectomy versus watchful waiting in early prostate cancer," N. Engl. J. Med. 352, 1977-1984 (2005). [CrossRef] [PubMed]
  8. B. Spajic, H. Eupic, D. Tomas, G. Stimac, B. Kruslin, and O. Kraus, "The incidence of hyperechoic prostate cancer in transrectal ultrasound-guided biopsy specimens," Urology 70, 734-737 (2007). [CrossRef] [PubMed]
  9. K. Shinohara, T. M. Wheeler, and P. T. Scardino, "The appearance of prostate cancer on transrectal ultrasonography: correlation of imaging and pathological examinations," J. Urol. 142, 76-82 (1989). [PubMed]
  10. C. R. Porter, "Does the number of prostate biopsies performed affect the nature of the cancer identified?" Nat. Clin. Pract. Urol. 4, 132-133 (2007). [CrossRef] [PubMed]
  11. V. Scattoni, A. Zlotta, R. Montironi, C. Schulman, P. Rigatti, and F. Montorsi, "Extended and saturation prostatic biopsy in the diagnosis and characterisation of prostate cancer: a critical analysis of the literature," Eur. Urol. 52,1309-1322 (2007). [CrossRef] [PubMed]
  12. B. Tromberg, J. Coquoz, O. Fishkin, J. B. Pham, T. Anderson, E. R. Butler, J. Cahn, M. Gross, J. D. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Phil. Trans. R. Soc. Lond. B 352, 661-668 (1997). [CrossRef]
  13. B. W. Pogue, S. P. Poplack, T.O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen," Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001). [PubMed]
  14. V. Ntziachristos and B. Chance, "Probing physiology and molecular function using optical imaging: applications to breast cancer," Breast Cancer Res. 3, 41-46 (2001). [CrossRef] [PubMed]
  15. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005). [CrossRef] [PubMed]
  16. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Nat. Acad. Sci. USA 94, 6468-6473 (1997). [CrossRef] [PubMed]
  17. Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, "Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005). [CrossRef] [PubMed]
  18. S. A. Bigler, R. E. Deering, and M. K. Brawer, "Comparison of microscopic vascularity in benign and malignant prostate tissue," Hum. Pathol. 24, 220-226 (1993). [CrossRef] [PubMed]
  19. J. H. Ali, W. B. Wang, M. Zevallos, and R. R. Alfano, "Near infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues," Technol. Cancer Res. Treat. 3, 491-497 (2004). [PubMed]
  20. M. R. Arnfield, J. D. Chapman, J. Tulip, M. C. Fenning, and M. S. McPhee, "Optical properties of experimental prostate tumors in vivo," Photochem. Photobiol. 57, 306-311 (1993). [CrossRef] [PubMed]
  21. T. C. Zhu, A. Dimofte, J. C. Finlay,  et al. "Optical properties of human prostate at 732 nm measured in mediated photodynamic therapy," Photochem. Photobiol. 81, 96-105 (2005). [CrossRef]
  22. T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, "In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy," J. Biomed. Opt. 12, 014022 (2007). [CrossRef] [PubMed]
  23. M. Goel, H. Radhakrishnan, H. Liu,  et al. "Application of near infrared multi-spectral CCD imager system to determine the hemodynamic changes in prostate tumor," in OSA Biomedical Topical Meetings (Optical Society of America, 2006), paper SH10.
  24. H. Liu, Y. Song, K. L. Worden, X. Jiang, A. Constantinescu, and R. P. Mason, "Noninvasive investigation of blood oxygenation dynamics of tumors by near-infrared spectroscopy," Appl. Opt. 39, 5231-43 (2000). [CrossRef]
  25. X. Zhou and T. C. Zhu, "Image reconstruction of continuous wave diffuse optical tomography (DOT) of human prostate," in Proceedings of the COMSOL Users Conference (2006).
  26. S. L. Jacques and M. Motamedi, "Tomographic needles and catheters for optical imaging of prostatic cancer," Proc. SPIE 2395, 111-118 (1995).
  27. C. Li, R. Liengsawangwong, H. Choi, and R. Cheung, "Using a priori structural information from magnetic resonance imaging to investigate the feasibility of prostate diffuse optical tomography and spectroscopy: a simulation study," Med. Phys. 34, 266-274 (2007). [CrossRef] [PubMed]
  28. C. Musgrove, C. F. Bunting, H. Dehghani, B. W. Pogue, and D. Piao, "Computational aspects of endoscopic near-infrared optical tomography: initial investigations," Proc. SPIE 6343, 643409 (2007)
  29. D. Piao, H. Xie, W. Zhang, G. Zhang, C. H. Musgrove, C. F. Bunting, H. Dehghani, B. W. Pogue, and S. N. Vemulapalli, "Near-infrared optical tomography: endoscopic imaging approach," Proc. SPIE 6431, 643103 (2007).
  30. H. Dehghani, C. M. Carpenter, P. K. Yalavarthy, B. W. Pogue, and J. P. Culver, "Structural a priori information in near-infrared optical tomography," Proc. SPIE 6431, 64310B1 (2007).
  31. Q. Zhu, T. Durduran, V. Ntziachristos, M. Holboke, and A. G. Yodh, "Imager that combines near-infrared diffusive light and ultrasound," Opt. Lett. 24, 1050-1052 (1999). [CrossRef]
  32. M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A. G. Yodh, "Three-dimensional diffuse optical mammography with ultrasound localization in a human subject," J. Biomed. Opt. 5:237-47 (2000). [CrossRef] [PubMed]
  33. B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, and K. D. Paulsen, "Three-dimensional simulation of near-infrared diffusion in tissue: boundary condition and geometry analysis for finite-element image reconstruction," Appl. Opt. 40, 588-600 (2001). [CrossRef]
  34. M. Schweiger, S. R. Arridge, and D. T. Delpy, "Application of the finite-element method for the forward and inverse models in optical tomography," J. Math. Imag. Vision 3, 263-283 (1993). [CrossRef]
  35. J. J. More, "Levenberg--Marquardt algorithm: implementation and theory," in Numerical Analysis, (Springer Berlin / Heidelberg, 1978), pp. 105-116.
  36. X. Yu, G. Chen, and S. Cheng, "Dynamic learning rate optimization of the backpropagation algorithm," IEEE Trans. Neural Netw. 6, 669-677 (1995). [CrossRef] [PubMed]
  37. D. Shen, Y. Zhan, and C. Davatzikos, "Segmentation of prostate boundaries from ultrasound images using statistical shape model," IEEE Tran. Med. Imaging 22, 539-55 (2003). [CrossRef]
  38. M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, "Reconstructing absorption and diffusion shape profiles in optical tomography using a level set technique," Opt. Lett. 31, 471-473 (2006). [CrossRef] [PubMed]
  39. V. Kolehmainen, S. R. Arridge, W. R. B. Lionheart, M. Vauhkonen, and J. P. Kaipio, "Recovery of region boundaries of piecewise constant coefficients of an elliptic PDE from boundary data," Inverse Probl. 15, 1375-1391 (1999). [CrossRef]
  40. V. Kolehmainen, M. Vauhkonen, J. P. Kaipio, and S. R. Arridge, "Recovery of piecewise constant coefficients in optical diffusion tomography," Opt. Express 7, 468-480 (2000). [PubMed]
  41. V. Kolehmainen, S. R. Arridge, M. Vauhkonen, and J. P. Kaipio, "Simultaneous reconstruction of internal tissue region boundaries and coefficients in optical diffusion tomography," Phys. Med. Biol. 45, 3267-3284 (2000). [CrossRef] [PubMed]
  42. S. Srinivasan, B. W. Pogue, H. Dehghani, S. Jiang, X. Song, and K. D. Paulsen, "Improved quantification of small objects in near-infrared diffuse optical tomography," J. Biomed. Opt. 9, 1161-1171 (2004). [CrossRef] [PubMed]
  43. P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, "Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis," Opt. Express 14, 6113-6127 (2006). [CrossRef] [PubMed]
  44. H. Shan, N. Pantong, J. Su, H. Liu, and M. V. Klibanov, "Globally convergent reconstruction algorithm for diffusion tomography of prostate," in Biomedical Optics/Digital Holography and Three-Dimensional Imaging/Laser Applications to Chemical, Security and Environmental Analysis on CD-ROM (The Optical Society of America, Washington, DC, 2008), paper BSuE33.
  45. A. M. Wise, T. A. Stamey, J. E. McNeal, and J. L. Clayton, "Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens," Urology 60,264-269 (2002). [PubMed]
  46. G. J. Miller and J. M. Cygan, "Morphology of prostate cancer: the effects of multifocality on histological grade, tumor volume and capsule penetration," J. Urol. 152(5 Pt 2), 1709-13 (1994). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited