OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 17616–17625

Demultiplexer with blazed waveguide sidewall grating and sub-wavelength grating structure

Przemek J. Bock, Pavel Cheben, André Delâge, Jens H. Schmid, Dan-Xia Xu, Siegfried Janz, and Trevor J. Hall  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 17616-17625 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (259 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an original diffraction grating demultiplexer device with a very small footprint, designed for the silicon-on-insulator waveguide platform. The wavelength dispersive properties are provided by a second-order diffraction grating designed to be lithographically defined and etched in the sidewall of a curved Si waveguide. The grating is blazed to maximize the -1st order diffraction efficiency. The diffracted light is coupled into the silicon slab waveguide via an impedance matching subwavelength grating gradient index antireflective interface. The waveguide is curved in order to focus the light onto the Rowland circle, where different wavelengths are intercepted by different receiver waveguides. The phase errors were substantially reduced using an apodized design with a chirped grating, which assures a constant effective index along the grating length. The simulated crosstalk is -30 dB. The device has 15 channels with a spacing of 25 nm, thus a broadband operational bandwidth of 375 nm. Its performance approaches the diffraction limit. The layout size is 90 µm×140 µm, which is the smallest footprint yet reported for a mux/dmux device of a similar performance.

© 2008 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.3120) Integrated optics : Integrated optics devices
(230.1950) Optical devices : Diffraction gratings

ToC Category:
Integrated Optics

Original Manuscript: May 2, 2008
Revised Manuscript: September 17, 2008
Manuscript Accepted: September 18, 2008
Published: October 17, 2008

Przemek J. Bock, Pavel Cheben, André Delâge, Jens H. Schmid, Dan-Xia Xu, Siegfried Janz, and Trevor J. Hall, "Demultiplexer with blazed waveguide sidewall grating and sub-wavelength grating structure," Opt. Express 16, 17616-17625 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Cheben, "Wavelength dispersive planar waveguide devices: echelle gratings and arrayed waveguide gratings," in Optical waveguides: from theory to applied technologies, M. L. Calvo and V. Lakshminarayanan, eds., (CRC Press, 2007), pp. 173-230.
  2. C. R. Doerr and K. Okamoto, "Advances in silica planar lightwave circuits," J. Lightwave Technol. 24, 4763-4789 (2006). [CrossRef]
  3. X. J. M. Leijtens, B. Kuhlow and M. K. Smit, "Arrayed waveguide gratings," in Wavelength filters in fiber optics, H. Venghaus, (Springer Verlag, 2006), pp. 125-187.
  4. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron and D.-X. Xu, "A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides," Opt. Express 15, 299-306 (2007). [CrossRef]
  5. Y. Komai, H. Nagano, K. Okamoto and K. Kodate, "Spectroscopic sensing using a visible arrayed-waveguide grating," Proc. SPIE 5867, 91-102 (2005).
  6. T. Fukazawa, F. Ohno and T. Baba, "Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004). [CrossRef]
  7. K. Sasaki, F. Ohno, A. Motegi and T. Baba, "Arrayed waveguide grating of 70 × 60 µm2 size based on Si photonic wire waveguides," Electron. Lett. 41, 801-802 (2005). [CrossRef]
  8. P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert and R. Baets, "Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array," Opt. Express 14, 664-669 (2006). [CrossRef] [PubMed]
  9. M. R. T. Pearson, A. Bezinger, A. Delâge, J. W. Fraser, S. Janz, P. E. Jessop, and D.-X. Xu, "Arrayed waveguide grating demultiplexers in silicon-on-insulator," Proc. SPIE 3953, 11-18 (2000). [CrossRef]
  10. P. Cheben, A. Delâge, L. Erickson, S. Janz, and D.-X. Xu, "Polarization compensation in silicon-on-insulator arrayed waveguide grating devices," Proc. SPIE 4293, 15-22 (2001). [CrossRef]
  11. P. Cheben, D.-X. Xu, S. Janz, and A. Delâge, "Scaling down photonic waveguide devices on the SOI platform," Proc. SPIE 5117, 147-156 (2003). [CrossRef]
  12. P. Cheben, D.-X. Xu, S. Janz, A. Delâge, and D. Dalacu, "Birefringence compensation in silicon-on-insulator planar waveguide demultiplexers using a buried oxide layer," Proc. SPIE 4997, 181-189 (2003). [CrossRef]
  13. D.-X. Xu, P. Cheben, D. Dalacu, A. Delâge, S. Janz, B. Lamontagne, M.-J. Picard, and W. N. Ye, "Eliminating the birefringence in silicon-on-insulator ridge waveguides by use of cladding stress," Opt. Lett. 29, 2384-2386 (2004). [CrossRef] [PubMed]
  14. S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson and D.-X. Xu, "Planar waveguide echelle gratings in silica-on-silicon," IEEE Photon. Technol. Lett. 16, 503-505 (2004). [CrossRef]
  15. S. Bidnyk, D. Feng, A. Balakrishnan, M. Pearson, M. Gao, H. Liang, W. Qian, C.-C. Kung, J. Fong, J. Yin and M. Asghari, "Silicon-on-insulator-based planar circuit for passive optical network applications," IEEE Photon. Technol. Lett. 18, 2392-2394 (2006). [CrossRef]
  16. J. Brouckaert, W. Bogaerts, P. Dumon, D. V. Thourhout and R. Baets, "Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform," J. Lightwave Technol. 25, 1269-1275 (2007). [CrossRef]
  17. A. Delâge and K. Dossou, "Polarisation dependent loss calculation in echelle gratings using finite element method and Rayleigh expansion," Opt. Quantum Electron 36, 223-238 (2004). [CrossRef]
  18. Y. Hao, Y. Wu, J. Yang, X. Jiang and M. Wang, "Novel dispersive and focusing device configuration based on curved waveguide grating (CWG)," Opt. Express 14, 8630-8637 (2006). [CrossRef] [PubMed]
  19. T. Goh, S. Suzuki, and A. Sugita, "Estimation of waveguide phase error in silica-based waveguides," J. Lightwave Technol. 15, 2107-2113 (1997). [CrossRef]
  20. E. Bisaillon, D. T. H. Tan, M.-C. Nadeau, L. Chrostowski and A. G. Kirk, "Distributed-grating wavelength demultiplexer in SOI," IEEE LEOS 462-463 (2006).
  21. J. H. Schmid, P. Cheben, S. Janz, J. Lapointe, E. Post and D.-X. Xu, "Gradient-index antireflective subwavelength structures for planar waveguide facets," Opt. Lett. 32, 1794-1796 (2007). [CrossRef] [PubMed]
  22. P. Lalanne and J.-P. Hugonin, "High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms," J. Opt. Soc. Am. A 15, 1843-1851 (1998). [CrossRef]
  23. H. Rowland, "Preliminary notice of results accomplished on the manufacture and theory of gratings for optical purposes," Phil. Mag.Suppl. 13, 469-474 (1882). [CrossRef]
  24. D. Marcuse, Light transmission optics (Van Nostrand Reinhold, 1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited