OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 17654–17666

Fluorescence relaxation in the near-field of a mesoscopic metallic particle: distance dependence and role of plasmon modes

G. Colas des Francs, A. Bouhelier, E. Finot, J. C. Weeber, A. Dereux, C. Girard, and E. Dujardin  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 17654-17666 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (365 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analytically and numerically analyze the fluorescence decay rate of a quantum emitter placed in the vicinity of a spherical metallic particle of mesoscopic size (i.e with dimensions comparable to the emission wavelength). We discuss the efficiency of the radiative decay rate and non-radiative coupling to the particle as well as their distance dependence. The electromagnetic coupling mechanisms between the emitter and the particle are investigated by analyzing the role of the plasmon modes and their nature (dipole, multipole or interface mode). We demonstrate that near-field coupling can be expressed in a simple form verifying the optical theorem for each particle modes.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2160) Physical optics : Energy transfer
(260.2510) Physical optics : Fluorescence

ToC Category:
Physical Optics

Original Manuscript: July 1, 2008
Revised Manuscript: August 22, 2008
Manuscript Accepted: August 24, 2008
Published: October 17, 2008

G. Colas des Francs, A. Bouhelier, E. Finot, J. C. Weeber, A. Dereux, C. Girard, and E. Dujardin, "Fluorescence relaxation in the near–field of a mesoscopic metallic particle: distance dependence and role of plasmon modes," Opt. Express 16, 17654-17666 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. P. Van Duyne, "Molecular plasmonics," Science 306, 985 (2004).
  2. D. W. Pohl, "Near-field optics seen as an antenna problem," in Near-field Optics, Principles and Applications, X. Zhu and M. Ohtsu, eds., (World Scientific, Singapore, 2000) pp. 9-21.
  3. P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005). [CrossRef] [PubMed]
  4. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "λ /4 resonance of an optical monopole antenna probed by single molecule fluorescence," Nano Lett. 7, 28-33 (2007). [CrossRef] [PubMed]
  5. D. Chang, A. S¨orensen, P. Hemmer, and M. Lukin, "Quantum Optics with Surface Plasmons," Phys. Rev. Lett. 97, 053002 (2006). [CrossRef] [PubMed]
  6. L. A. Blanco and F. J. G. de Abajo, "Spontaneous light emission in complex nanostructures," Phys. Rev. B 69, 205414 (2004). [CrossRef]
  7. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  8. T. Hartling, P. Reichenbach, and L. M. Eng, "Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle," Opt. Express 15, 12806-12817 (2007). [CrossRef] [PubMed]
  9. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, "Design of nanoantennae for the enhancement of spontaneous emission," Opt. Lett. 32, 1623-1625 (2007). [CrossRef] [PubMed]
  10. G. Baffou, C. Girard, E. Dujardin, G. Colas des Francs, and O. Martin, "Molecular quenching and relaxation in a plasmonic tunable nanogap," Phys. Rev. B 77, 121101(R) (2008). [CrossRef]
  11. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J.M. van Veggel, D. N. Reinhoudt and M. Moller, and D. I. Gittins, "Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002). [CrossRef] [PubMed]
  12. S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna," Phys. Rev. Lett. 97, 017402 (2006). [CrossRef] [PubMed]
  13. P. Bharadwaj and L. Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express 15, 14266-14274 (2007). [CrossRef] [PubMed]
  14. H. Mertens, A. Koenderink, and A. Polman, "Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model," Phys. Rev. B 76, 115123 (2007). [CrossRef]
  15. V. Klimov, M. Ducloy, and V. S. Letokhov, "Radiative Frequency Shift and LineWidth of an Atom Dipole in the Vicinity of a Dielectric Microsphere," J. Mod. Opt. 43, 2251 (1996). [CrossRef]
  16. P. T. Leung, "Decay of molecules at spherical surfaces: Nonlocal effects," Phys. Rev. B 42, 7622 (1990). [CrossRef]
  17. C. Girard, S. Maghezzi, and F. Hache, "Multipolar propagators near a small metallic sphere : A self consistent calculation," J. Chem. Phys. 91, 5509-5517 (1989). [CrossRef]
  18. C. Bohren and D. Huffman, Absorption and scattering of light by small particles (1983).
  19. Y. S. Kim, P. T. Leung, and T. F. George, "Classical Decay Rates for Molecules in the Presence of a Spherical Surface: a Complete Treatment," Surf. Sci. 195, 1-14 (1988). [CrossRef]
  20. H. Chew, "Transitions rates of atoms near spherical surfaces," J. Chem. Phys. 87, 1355-1360 (1987). [CrossRef]
  21. M. Abramowitz and I. Stegun, Hanbbook of mathematical functions (Dover Publications, 1972).
  22. G. Colas des Francs, C. Girard, M. Juan, and A. Dereux, "Energy transfer in near-field optics," J. Chem. Phys. 123, 174709 (2005). [CrossRef] [PubMed]
  23. R. Carminati, J. Greffet, C. Henkel, and J. Vigoureux, "Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle," Opt. Commun. 261, 368-375 (2006). [CrossRef]
  24. R. R. Chance, A. Prock, and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978). [CrossRef]
  25. M. Meier and A. Wokaun, "Enhanced fields on large metal particles: dynamic depolarization," Opt. Lett. 8, 581 (1983). [CrossRef] [PubMed]
  26. G. Colas des Francs, C. Girard, A. Bruyant, and A. Dereux, "SNOM signal near plasmonic nanostructures: an analogy with fluorescence decay channels," J. Microsc. (NFO9) 229, 302-306 (2008). [CrossRef]
  27. A. Trugler and U. Hohenester, "Strong coupling between a metallic nanoparticle and a single molecule," Phys. Rev. B 77, 115403 (2008). [CrossRef]
  28. W. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998). [CrossRef]
  29. C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, G. F. Strouse Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier, J. Am. Chem. Soc. 127, 3115-3119 (2005) . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited