OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 17780–17791

Wavelength dependence of sensitivity in spectral diffuse optical imaging: effect of normalization on image reconstruction

Matthew E. Eames and Hamid Dehghani  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 17780-17791 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1587 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Near Infrared Diffuse Optical Tomography has the potential to be used as a non-invasive imaging tool for biological tissue specifically for the diagnosis and characterization of breast cancer. Most model based reconstruction algorithms rely on calculating and inverting a large Jacobian matrix. Although this method is flexible for a wide range of complex problems, it usually results in large image artifacts from hypersensitivity around the detectors. In this work a Jacobian normalization technique is presented which takes into account the varying magnitude of different optical parameters creating a more uniform update within a spectral image reconstruction model. Using simulated data the Jacobian normalization method is used to reconstructed images of absolute chromophore and scattering parameters which are qualitatively and quantitatively as compared to conventional methods. The hypersensitivity resulting in boundary artifacts are shown to be minimized with only a small additional computational cost.

© 2008 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 2, 2008
Revised Manuscript: October 14, 2008
Manuscript Accepted: October 15, 2008
Published: October 17, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Matthew E. Eames and Hamid Dehghani, "Wavelength dependence of sensitivity in spectral diffuse optical imaging: effect of normalization on image reconstruction," Opt. Express 16, 17780-17791 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef] [PubMed]
  2. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Interpreting Hemoglobin and Water Concentration, Oxygen Saturation and Scattering Measured In Vivo by Near-Infrared Breast Tomography," PNAS 100, 12349-12354 (2003). [CrossRef] [PubMed]
  3. H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, "Multiwavelength Three-Dimensional Near-Infrared Tomography of the Breast: Initial Simulation, Phantom, and Clinical Results," Appl. Opt. 42, 135-145 (2003). [CrossRef] [PubMed]
  4. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005). [CrossRef] [PubMed]
  5. G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, "Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography," Phys. Med. Biol. 52, 3619-3641 (2007). [CrossRef] [PubMed]
  6. J. C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004). [CrossRef] [PubMed]
  7. D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, "Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans," Opt. Lett. 29, 1506-1508 (2004). [CrossRef] [PubMed]
  8. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, "Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography," PNAS 104, 12169-12174 (2007). [CrossRef] [PubMed]
  9. M. A. Franceschini, S. Fantini, J. J. Thompson, J. P. Culver, and D. A. Boas, "Hemodynamic evoked response of the sensorimotor cortex measured non-invasively with near-infrared optical imaging," Psychophysiology 40, 548-560 (2003). [CrossRef] [PubMed]
  10. H. Dehghani, B. W. Pogue, S. Jiang, B. Brooksby, and K. D. Paulsen, "Three Dimensional Optical Tomography: Resolution in Small Object Imaging," Appl. Opt. 42, 3117-3128 (2003). [CrossRef] [PubMed]
  11. H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, "MRI coupled Broadband Near Infrared Tomography System for Small Animal Brain Studies," Appl. Opt. 44, 2177-2188 (2005). [CrossRef] [PubMed]
  12. H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003). [CrossRef] [PubMed]
  13. V. Ntziachristos, "Fluorescence Molecular Imaging," Rev. Biomed. Eng. 8, 1-33 (2006). [CrossRef]
  14. G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," PNAS 102, 18252-18257 (2005). [CrossRef] [PubMed]
  15. S. R. Arridge, "Optical tomography in medical imaging," Inverse Prob. 15, R41-R93 (1999). [CrossRef]
  16. X. Wang, B. W. Pogue, S. Jiang, H. Dehghani, X. Song, S. Srinivasan, B. A. Brooksby, K. D. Paulsen, C. Kogel, S. P. Poplack, and W. A. Wells, "Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography," J. Biomed. Opt. 11, 041106 (2006). [CrossRef] [PubMed]
  17. S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, S. P. Poplack, and K. D. Paulsen, "Near-Infrared Characterization of Breast Tumors In Vivo using Spectrally-Constrained Reconstruction," Technol. Cancer Res. Treat. 5, 513-526 (2005).
  18. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, and A. G. Yodh, "Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005). [CrossRef] [PubMed]
  19. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, "Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography," Opt. Lett. 29, 256-258 (2004). [CrossRef] [PubMed]
  20. A. Torricelli, A. Pifferi, A. Taroni, E. Giambattistelli, and R. Cubeddu, "In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy," Phys. Med. Biol. 46, 2227-2237 (2001). [CrossRef] [PubMed]
  21. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, "Noninvasive functional optical spectroscopy of human breast tissue," PNAS 98, 4420-4425 (2001). [CrossRef] [PubMed]
  22. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia (New York) 2, 26-40 (2000). [CrossRef] [PubMed]
  23. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, "Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media," Appl. Opt. 37, 7447-7458 (1998). [CrossRef]
  24. S. R. Arridge, and W. R. B. Lionheart, "Nonuniqueness in diffusion-based optical tomography," Opt. Lett. 23, 882-884 (1998). [CrossRef]
  25. J. C. Hebden, S. R. Arridge, and D. T. Delpy, "Optical imaging in medicine: I. Experimental techniques," Phys. Med. Biol. 42, 825-840 (1997). [CrossRef] [PubMed]
  26. V. Ntziachristos, X. H. Ma, and B. Chance, "Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography," Rev. Sci. Instrum. 69, 4221-4233 (1998). [CrossRef]
  27. M. S. Patterson, C. B., and B. C. Wilson, "Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989). [CrossRef] [PubMed]
  28. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, "Development and Calibration of a Parallel Modulated Near-Infrared Tomography System for Hemoglobin Imaging In Vivo," Rev. Sci. Instrum. 72, 1817-1824 (2001). [CrossRef]
  29. M. E. Eames, J. Wang, B. W. Pogue, and H. Dehghani, "Wavelength Band Optimisation in Spectral Near-Infrared Optical Tomography Improves Accuracy While Reducing Data Acquisition and Computational Burdon," J. Biomed. Opt., in press (2008). [CrossRef]
  30. J. Wang, S. C. Davis, S. Srinivasan, S. Jiang, B. W. Pogue, and K. D. Paulsen, "Spectral tomography with diffuse near-infrared light: inclusion of broadband frequency domain spectral data," J. Biomed. Opt. 13, 041305 (2008). [CrossRef] [PubMed]
  31. B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, "Spectral-prior information improves Near-Infrared diffuse tomography more than spatial-prior," Opt. Lett. 30, 1968-1970 (2005). [CrossRef] [PubMed]
  32. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan,C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, "Near Infrared Optical Tomography using NIRFAST: Algorithms for Numerical Model and Image Reconstruction Algorithms," Communications in Numerical Methods in Engineering, in press (2008).
  33. A. H. Hielscher and S. Bartel, "Use of penalty terms in gradient-based iterative reconstruction schemes for optical tomography," J. Biomed. Opt. 6, 183-192 (2001). [CrossRef] [PubMed]
  34. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Baysian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," PNAS 99, 9619-9624 (2002). [CrossRef] [PubMed]
  35. H. B. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, "Frequency-domain optical image reconstruction in turbid media: An experimental study of single-target detectability," Appl. Opt. 36, 52-63 (1997). [CrossRef] [PubMed]
  36. W. Zhu, Y. Wang, Y. Yao, J. Chang, H. L. Graber, and R. L. Barbour, "Iterative total least-squares image reconstruction algorithm for optical tomography by the conjugate gradient method," J. Opt. Soc. Am. A 14, 799-807 (1997). [CrossRef]
  37. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, "Spectrally Constrained Chromophore and Scattering NIR Tomography Provides Quantitative and Robust Reconstruction," Appl. Opt. 44, 1858-1869 (2005). [CrossRef] [PubMed]
  38. J. R. Mourant, T. Fuselier, J. Boyer,T. M. Johnson, and I. J. Bigio, "Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms," Appl. Opt. 36, 949-957 (1997). [CrossRef] [PubMed]
  39. S. R. Arridge and M. Schweiger, "Photon-measurement density functions. Part 2: Finite-element-method calculations," Appl. Opt. 34, 8026-8037 (1995). [CrossRef] [PubMed]
  40. P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, "Critical computational aspects of near infrared circular tomographic imaging: Analysis of measurement number, mesh resolution and reconstruction basis," Opt. Express 14, 6113-6127 (2006). [CrossRef] [PubMed]
  41. M. E. Eames, B. W. Pogue, P. K. Yalavarthy, and H. Dehghani, "An efficient Jacobian reduction method for diffuse optical image reconstruction," Opt. Express 15, 15908-15919 (2007). [CrossRef] [PubMed]
  42. S. Prahl, http://omlc.ogi.edu/spectra.
  43. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, "Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization," Opt. Express 15, 4066-4082 (2007). [CrossRef] [PubMed]
  44. T. O. McBride, B. W. Pogue, U. L. Osterberg, and K. D. Paulsen, "Strategies for absolute calibration of near infrared tomographic tissue imaging," Oxygen Transport to Tissue 24, 85-99 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited