OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 17792–17807

Technique for handling wave propagation specific effects in biological tissue: Mapping of the photon transport equation to Maxwell’s equations

Chintha C Handapangoda, Malin Premaratne, David M Paganin, and Priyantha R D S Hendahewa  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 17792-17807 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1066 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel algorithm for mapping the photon transport equation (PTE) to Maxwell’s equations is presented. Owing to its accuracy, wave propagation through biological tissue is modeled using the PTE. The mapping of the PTE to Maxwell’s equations is required to model wave propagation through foreign structures implanted in biological tissue for sensing and characterization of tissue properties. The PTE solves for only the magnitude of the intensity but Maxwell’s equations require the phase information as well. However, it is possible to construct the phase information approximately by solving the transport of intensity equation (TIE) using the full multigrid algorithm.

© 2008 Optical Society of America

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6930) Medical optics and biotechnology : Tissue

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 4, 2008
Revised Manuscript: September 28, 2008
Manuscript Accepted: October 10, 2008
Published: October 17, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Chintha C. Handapangoda, Malin Premaratne, David M. Paganin, and Priyantha R. D. S. Hendahewa, "Technique for handling wave propagation specific effects in biological tissue: Mapping of the photon transport equation to Maxwell’s equations," Opt. Express 16, 17792-17807 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kumar, K. Mitra, and Y. Yamada, "Hyperbolic damped-wave models for transient light-pulse propagation in scattering media," Appl. Opt. 35, 3372-3378 (1996). [CrossRef] [PubMed]
  2. M. Premaratne, E. Premaratne, and A. J. Lowery, "The photon transport equation for turbid biological media with spatially varying isotropic refractive index," Opt. Express 13, 389-399 (2005). [CrossRef] [PubMed]
  3. C. C. Handapangoda, M. Premaratne, L. Yeo, and J. Friend, "Laguerre Runge-Kutta-Fehlberg method for simulating laser pulse propagation in biological tissue," IEEE J. Sel. Top. Quantum Electron. 14, 105-112 (2008). [CrossRef]
  4. F. L. Neerhoff and G. Mur, "Diffraction of a plane electromagnetic wave by a slit in a thick screen placed between two different media," Appl. Sci. Res. 28, 73-88 (1973).
  5. S. V. Kukhlevsky, M. Mechler, L. Csapo, K. Janssens, and O. Samek, "Enhanced transmission versus localization of a light pulse by a subwavelength metal slit," Phys. Rev. B. 70, 195428 (2004). [CrossRef]
  6. S. Chandrasekhar, Radiative Transfer, (Dover, New York, 1960).
  7. S. C. Chapra and R. P. Canale, Numerical Methods For Engineers, (4th ed., McGraw-Hill, New York, 2002).
  8. D. M. Paganin, Coherent X-Ray Optics, (Oxford University Press, New York, 2006). [CrossRef]
  9. M. Born and E. Wolf, Principles of Optics, (7th ed., Cambridge University Press, Cambridge, 1999).
  10. M. R. Spiegel, Vector Analysis And An Introduction To Tensor Analysis, (McGraw-Hill, 1959).
  11. M. R. Teague, "Deterministic phase retrieval: a Green’s function solution," J. Opt. Soc. Am. 73, 1434-1441 (1983). [CrossRef]
  12. T. E. Gureyev, C. Raven, A. Snigireva, I. Snigireva, and S. W. Wilkins, "Hard x-ray quantitative non-interferometric phase-contrast microscopy," J. Phys. D: Appl. Phys. 32, 563-567 (1999). [CrossRef]
  13. L. J. Allen and M. P. Oxley, "Phase retrieval from series of images obtained by defocus variation," Opt. Commun. 199, 65-75 (2001). [CrossRef]
  14. T. E. Gureyev and K. A. Nugent, "Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination," J. Opt. Soc. Am. A 13, 1670-1682 (1996). [CrossRef]
  15. T. E. Gureyev and K. A. Nugent, "Rapid quantitative phase imaging using the transport of intensity equation," Opt. Commun. 133, 339-346 (1997). [CrossRef]
  16. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes In C: The Art Of Scientific Computing, (2nd ed., Cambridge University Press, Cambridge, 1992).
  17. T. E. Gureyev, A. Roberts, and K. A. Nugent, "Partially coherent fields, the transport of intensity equation, and phase uniqueness," J. Opt. Soc. Am. A 12, 1942-1946 (1995). [CrossRef]
  18. G. E. Thomas and K. Stamnes, Radiative Transfer In The Atmosphere And Ocean, (Cambridge University Press, 1999).
  19. R. Ramamoorthi, and P. Hanrahan, "On the relationship between radiance and irradiance: determining the illumination from images of a convex Lambertian object," J. Opt. Soc. Am. A 18, 2448-2459 (2001). [CrossRef]
  20. D. Paganin and K. A. Nugent, "Non-interferometric phase determination," P. Hawkes (editor), in Advances in Imaging and Electron Physics (Harcourt Publishers, Kent, 2001) Vol. 118, pp. 85-127.
  21. D. Paganin and K. A. Nugent, "Non-interferometric phase imaging with partially coherent light," Phys. Rev. Lett. 80, 2586-2589 (1998). [CrossRef]
  22. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, "Quantitative optical phase microscopy," Opt. Lett. 23, 817-819 (1998). [CrossRef]
  23. D. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, "Quantitative phase-amplitude microscopy III: The effects of noise," J. Microscopy 214, 51-61 (2004). [CrossRef]
  24. W. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  25. M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Applications, (Springer, Germany, 2004).
  26. S. A. Prahl, J. C. van Gemert, and A. J. Welch, "Determining the optical properties of turbid media by using the adding-doubling method," Appl. Opt. 32, 559-568 (1993). [CrossRef] [PubMed]
  27. C. Y. Wu and S. H. Wu, "Integral equation formulation for transient radiative transfer in an anisotropically scattering medium," Int. J. Heat Mass Trans. 43, 2009-2020 (2000). [CrossRef]
  28. A. E. Profio, "Light transport in tissue," Appl. Opt. 28, 2216-2222 (1989). [CrossRef] [PubMed]
  29. M. S. Patterson, B. C. Wilson, and D. R. Wyman, "The propagation of optical radiation in tissue 1. Models of radiation transport and their application," Lasers in Medical Science 6, 155-168, (1991). [CrossRef]
  30. G. Yoon, A. J. Welch, M. Motamedi, and M. C. J. van Gemert. "Development and application of three-dimensional light distribution model for laser irradiated tissue," IEEE J. Quantum Electron. 23, 1721-1733 (1987). [CrossRef]
  31. W. D. Burnett, "Evaluation of laser hazards to the eye and the skin," Amer. Ind. Hyg. Assoc. J. 30, 582-587 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited