OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 17848–17853

Generation of optical pulses in VCSELs below the static threshold using asymmetric current modulation

J. Zamora-Munt and C. Masoller  »View Author Affiliations


Optics Express, Vol. 16, Issue 22, pp. 17848-17853 (2008)
http://dx.doi.org/10.1364/OE.16.017848


View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel method for the generation of sub-nanosecond optical pulses in directly modulated vertical-cavity surface-emitting lasers (VCSELs) that operate, on average, below the cw threshold. Using the spin-flip model we demonstrate that irregular optical pulses in two orthogonal linear polarizations can be generated via asymmetric triangular modulation of period of a few nanoseconds, with a slow rising ramp followed by a fast decreasing one. For an optimal modulation asymmetry the effective threshold reduction is about 20%, the pulse amplitude is maximum and the dispersion of the pulse amplitude is minimum.

© 2008 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(270.3100) Quantum optics : Instabilities and chaos

ToC Category:
Optoelectronics

History
Original Manuscript: July 8, 2008
Revised Manuscript: October 15, 2008
Manuscript Accepted: October 16, 2008
Published: October 20, 2008

Citation
J. Zamora-Munt and C. Masoller, "Generation of optical pulses in VCSELs below the static threshold using asymmetric current modulation," Opt. Express 16, 17848-17853 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-17848


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Iga, "Surface-emitting laser -its birth and generation of new optoelectronics field," IEEE J. Sel. Top. Quantum Electron.  6, 1201-1215 (2000). [CrossRef]
  2. H. Thienpont and J. Danckaert, eds., VCSELs and Optical Interconnects, Proc. SPIE 4942, 236-246(2003).
  3. A. J. Danner, J. J. Raftery, P. O. Leisher, and K. D. Choquette, "Single mode photonic crystal vertical cavity lasers," Appl. Phys. Lett 88, 091114 (2006). [CrossRef]
  4. T. Czyszanowski, M. Dems, and K. Panajotov, "Single mode condition and modes discrimination in photoniccrystal 1.3 mu m AlInGaAs/InP VCSEL," Opt. Express 15, 5604-5609 (2007). [CrossRef] [PubMed]
  5. S. Boutami, B. Benbakir, J. L. Leclercq, and P. Viktorovitch, "Compact and polarization controlled 1.55 mu m vertical-cavity surface-emitting laser using single-layer photonic crystal mirror," Appl. Phys. Lett. 91, 071105 (2007). [CrossRef]
  6. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Vonlehmen, L. T. Florez and N. G. Stoffel, "Dynamic, polarization and transverse-mode characteristics of vertical cavity surface emitting lasers," IEEE J. Quantum Electron. 27, 1402-1409 (1991). [CrossRef]
  7. K. D. Choquette, R. P. Schneider, K. L. Lear and R. E. Leibenguth, "Gain-dependent polarization properties of vertical-cavity lasers,"IEEE J. Sel. Top. Quantum Electron. 1, 661-666 (1995). [CrossRef]
  8. J. S. Gustavsson, A. Haglund, J. A. Vukusic, J. Bengtsson, P. Jedrasik, and A. Larsson, "Efficient and individually controllable mechanisms for mode and polarization selection in VCSELs, based on a common, localized, subwavelength surface grating," Opt. Express 13, 6626-6634 (2005). [CrossRef] [PubMed]
  9. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007) [CrossRef]
  10. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nat. Photonics 2, 180-184 (2008). [CrossRef]
  11. G. P. Agrawal, "Effect of gain nonlinearities on period doubling and chaos in directly modualted semiconductorlasers," Appl. Phys. Lett. 49, 1013-1015 (1986). [CrossRef]
  12. S. Bennett, C. M. Snowden, and S. Iezekiel, "Nonlinear dynamics in directly modulated multiple-quantum-well laser diodes," IEEE J. Quantum Electron. 33, 2076-2083 (1997). [CrossRef]
  13. H. Lamela, G. Carpintero, and F. J. Mancebo, "Period tripling and chaos in the dynamic behavior of directly modulated diode lasers," IEEE J. Quantum Electron. 34, 1797-1801 (1998). [CrossRef]
  14. A. Valle, L. Pesquera, S. I. Turovets, and J. M. Lopez, "Nonlinear dynamics of current-modulated vertical-cavity surface-emitting lasers," Opt. Commun. 208, 173-182 (2002). [CrossRef]
  15. M. Sciamanna, A. Valle, P. Megret, M. Blondel, and K. Panajotov, "Nonlinear polarization dynamics in directly modulated vertical-cavity surface-emitting lasers," Phys. Rev. E 68, 016207 (2003). [CrossRef]
  16. A. Valle, M. Sciamanna, and K. Panajotov, "Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers under current modulation," Phys. Rev. E 76, 046206 (2007). [CrossRef]
  17. A. Valle, M. Sciamanna, and K. Panajotov, "Irregular pulsating polarization dynamics in gain-switched verticalcavity surface-emitting lasers," IEEE J. Quantum Electron. 44, 136-143 (2008). [CrossRef]
  18. C. Masoller, M. S. Torre, and K. A. Shore, "Polarization dynamics of current-modulated vertical-cavity surfaceemitting lasers," IEEE J. Quantum Electron. 43, 1074-1082 (2007). [CrossRef]
  19. C. Masoller, M. S. Torre and P. Mandel, "Influence of the injection current sweep rate on the polarization switching of vertical-cavity surface-emitting laser," J. Appl. Phys. 99, 026108 (2006). [CrossRef]
  20. J. Paul, C. Masoller, Y. Hong, P. S. Spencer, and K. A. Shore, "Experimental study of polarization switching of vertical-cavity surface-emitting lasers as a dynamical bifurcation," Opt. Lett. 31, 748-750 (2006). [CrossRef] [PubMed]
  21. J. Paul, C. Masoller, P. Mandel, Y. Hong, P. S. Spencer, and K. A. Shore, "Experimental and theoretical study of dynamical hysteresis and scaling laws in the polarization switching of vertical-cavity surface-emitting lasers," Phys. Rev. A 77, 043803 (2008). [CrossRef]
  22. C. E. Preda, B. Segard, and P. Glorieux, "Weak temporal ratchet effect by asymmetric modulation of a laser," Opt. Lett. 31, 2347-2349 (2006). [CrossRef] [PubMed]
  23. M. San Miguel, Q. Feng, and J. V. Moloney, "Light-polarization dynamics in surface-emitting semiconductor lasers," Phys. Rev. A 52, 1728-1739 (1995). [CrossRef] [PubMed]
  24. J. Martin-Regalado, F. Prati, M. San Miguel, and N. B. Abraham, "Polarization properties of vertical-cavity surface- emitting lasers," IEEE J. Quantum Electron. 33, 765-783 (1997). [CrossRef]
  25. T. Ackemann and M. Sondermann, "Characteristics of polarization switching from the low to the high frequency mode in vertical-cavity surface-emitting lasers," Appl. Phys. Lett. 78, 3574-3576 (2001). [CrossRef]
  26. C. Masoller and A. S. Torre, "Influence of optical feedback on the polarization switching of vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 41, 483-489 (2005). [CrossRef]
  27. A. Homayounfar and M. J. Adams, "Analysis of SFM dynamics in solitary and optically-injected VCSELs," Opt. Express 15, 10504-10519 (2007).
  28. L. Illing and M. B. Kennel, "Shaping current waveforms for direct modulation of semiconductor lasers," IEEE J. Quantum Electron. 40, 445-452 (2004). [CrossRef]
  29. X. Hachair, S. Barland, J. R. Tredicce, and G. L. Lippi, "Optimization of the switch-on and switch-off transition in a commercial laser," Appl. Opt. 44, 4761-4774 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited