OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 18057–18066

Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms

Junming Zhao, Yijun Feng, Bo Zhu, and Tian Jiang  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 18057-18066 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1843 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the concept of sub-wavelength imaging through compensated bilayer of anisotropic metamaterials (AMMs), which is an expansion of the perfect lens configuration, we propose two dimensional prism pair structures of compensated AMMs that are capable of manipulating two dimensional sub-wavelength images. We demonstrate that through properly designed symmetric and asymmetric compensated prism pair structures planar image rotation with arbitrary angle, lateral image shift, as well as image magnification could be achieved with sub-wavelength resolution. Both theoretical analysis and full wave electromagnetic simulations have been employed to verify the properties of the proposed prism structures. Utilizing the proposed AMM prisms, flat optical image of objects with sub-wavelength features can be projected and magnified to wavelength scale allowing for further optical processing of the image by conventional optics.

© 2008 Optical Society of America

OCIS Codes
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(160.1190) Materials : Anisotropic optical materials
(230.5480) Optical devices : Prisms
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: August 1, 2008
Revised Manuscript: October 8, 2008
Manuscript Accepted: October 16, 2008
Published: October 21, 2008

Junming Zhao, Yijun Feng, Bo Zhu, and Tian Jiang, "Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms," Opt. Express 16, 18057-18066 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991). [CrossRef]
  2. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, Cambridge, 1999).
  3. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  4. S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747 (2002). [CrossRef]
  5. J. T. Shen and P. M. Platzman, "Near-field imaging with negative dielectric constant lenses," Appl. Phys. Lett. 80, 3286 (2002). [CrossRef]
  6. N. Fang and X. Zhang, "Imaging properties of a metamaterial superlens," Appl. Phys. Lett. 82, 161-163 (2003). [CrossRef]
  7. S. A. Ramakrishna and J. B. Pendry, "Imaging the near field," J. Mod. Opt. 50, 1419 (2003).
  8. N. Lagarkov and V. N. Kissel, "Near-perfect imaging in a focusing system based on a left-handed-material plate," Phys. Rev. Lett. 92, 077401(2004). [CrossRef] [PubMed]
  9. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  10. D. Melville and R. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127-2134 (2005). [CrossRef] [PubMed]
  11. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field microscopy Through a SiC Superlens," Science 313, 1595 (2006). [CrossRef] [PubMed]
  12. D. R. Smith and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett. 90, 077405 (2003). [CrossRef] [PubMed]
  13. I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media - media with negative parameters, capable of supporting backward waves," Microwave Opt. Technol. Lett. 31, 129-133 (2001). [CrossRef]
  14. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244-2246 (2004). [CrossRef]
  15. K. G. Balmain, A. A. E. Luettgen, and P. C. Kremer, "Power Flow for Resonance Cone Phenomena in Planar Anisotropic Metamaterials," IEEE Trans. Antennas Propag. 51, 2612-2618 (2003). [CrossRef]
  16. O. Siddiqui and G. V. Eleftheriades, "Resonance-cone focusing in a compensating bilayer of continuous hyperbolic microstrip grids," Appl. Phys. Lett. 85, 1292-1294 (2004). [CrossRef]
  17. J. B. Pendry and S. A. Ramakrishna, "Focusing light using negative refraction," J. Phys.: Condens. Matter 15, 6345-6364 (2003).
  18. D. Schurig and D. R. Smith, "Sub-diffraction imaging with compensating bilayers," New. J. Phys. 7, 162 (2005). [CrossRef]
  19. Y. Chen, X. Teng, Y. Huang, and Y. Feng, "Loss and retardation effect on subwavelength imaging by compensated bilayer of anisotropic metamaterials," J. Appl. Phys. 100, 124910 (2006). [CrossRef]
  20. Y. Feng, J. Zhao, X. Teng, Y. Chen, and T. Jiang, "Subwavelength imaging with compensated anisotropic bilayers realized by transmission-line metamaterials," Phys. Rev. B 75, 155107 (2007). [CrossRef]
  21. V. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005). [CrossRef] [PubMed]
  22. Z. Jacob, L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006). [CrossRef] [PubMed]
  23. A. Salandrino and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Phy. Rev. B 74, 075103 (2006). [CrossRef]
  24. A. V. Kildishev and E. E. Narimanov, "Impedance-matched hyperlens," Opt. Lett. 32, 3432-3434 (2007). [CrossRef] [PubMed]
  25. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686-1686 (2007). [CrossRef] [PubMed]
  26. I. Smolyaninov, Y. Hung, and C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 315, 1699-1701 (2007). [CrossRef] [PubMed]
  27. M. Tsang and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B 77, 035122 (2008). [CrossRef]
  28. A. V. Kildishev and V. M. Shalaev, "Engineering space for light via transformation optics," Opt. Lett. 33, 43-45(2008). [CrossRef]
  29. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, New York, 1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited