OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 18152–18163

Simulation of three-dimensional waveguide discontinuities by a full-vector mode-matching method based on finite-difference schemes

Jianwei Mu and Wei-Ping Huang  »View Author Affiliations


Optics Express, Vol. 16, Issue 22, pp. 18152-18163 (2008)
http://dx.doi.org/10.1364/OE.16.018152


View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A rigorous full-vector analysis based on the finite-difference mode-matching method is presented for three-dimensional optical wave propagation problems. The computation model is facilitated by a perfectly matched layer (PML) terminated with a perfectly reflecting boundary condition (PRB). The complex modes including both the guided and the radiation fields of the three-dimensional waveguide with arbitrary index profiles are computed by a finite-difference scheme. The method is applied to and validated by the analysis of the facet reflectivity of a buried waveguide and the power exchange of a periodically loaded dielectric waveguide polarization rotator.

© 2008 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Integrated Optics

History
Original Manuscript: July 29, 2008
Revised Manuscript: September 29, 2008
Manuscript Accepted: October 20, 2008
Published: October 22, 2008

Citation
Jianwei Mu and Wei-Ping Huang, "Simulation of three-dimensional waveguide discontinuities by a full-vector mode-matching method based on finite-difference schemes," Opt. Express 16, 18152-18163 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-18152


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Janz, P. Cheben, D. Dalacu, A. Delage, A. Densmore, B. Lamontagne, M. J. Picard, E. Post, J. H. Schmid, P. Waldron, D. X. Xu, K. P. Yap, and W. N. Ye, "Microphotonic elements for integration on the silicon-on-insulator waveguide platform," IEEE J. Sel. Top. Quantum Electron. 12, 1402-1415 (2006). [CrossRef]
  2. M. Lipson, "Guiding, modulating, and emitting light on silicon - Challenges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005). [CrossRef]
  3. G. T. Reed, "Device physics - The optical age of silicon," Nature 427, 595-596 (2004). [CrossRef] [PubMed]
  4. C. Manolatou, S. G. Johnson, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "High-density integrated optics," J. Lightwave Technol. 17, 1682-1692 (1999). [CrossRef]
  5. T. E. Murphy, J. T. Hastings, and H. I. Smith, "Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides," J. Lightwave Technol. 19, 1938-1942 (2001). [CrossRef]
  6. O. Limon, A. Rudnitsky, Z. Zalevsky, M. Nathan, L. Businaro, D. Cojoc, and A. Gerardino, "All-optical nano modulator on a silicon chip," Opt. Express 15, 9029-9039 (2007), http://www.opticsexpress.org/abstract.cfm?uri=OE-15-14-9029. [CrossRef] [PubMed]
  7. L. Liao, D. Samara-Rubio, M. Morse, A. S. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3129. [CrossRef] [PubMed]
  8. W. Streifer, D. Scifres, and R. Burnham, "Coupled wave analysis of DFB and DBR lasers," IEEE J. Quantum Electron. 13, 134-141 (1977). [CrossRef]
  9. A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. 9, 919-933 (1973). [CrossRef]
  10. A. M. Shams-Zadeh-Amiri, J. Hong, X. Li, and W. P. Huang, "Second- and higher order resonant gratings with gain or loss - Part I: Green's function analysis," IEEE J. Quantum Electron. 36, 1421-1430 (2000). [CrossRef]
  11. A. Taflove, and S. C. Hagness, Computational Electrodynamics : the finite-difference time-domain method (Artech House, Boston, 2005).
  12. P. L. Ho and Y. Y. Lu, "A stable bidirectional propagation method based on scattering operators," IEEE Photon. Technol. 13, 1316-1318 (2001). [CrossRef]
  13. P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33, 327-341 (2001). [CrossRef]
  14. S. F. Helfert, A. Barcz, and R. Pregla, "Three-dimensional vectorial analysis of waveguide structures with the method of lines," Opt. Quantum Electron. 35, 381-394 (2003). [CrossRef]
  15. T. E. Rozzi, "Rigorous Analysis of Step Discontinuity in a Planar Dielectric Waveguide," IEEE Trans. Microwave Theory Tech. 26, 738-746 (1978). [CrossRef]
  16. H. Shigesawa and M. Tsuji, "Mode Propagation through a Step Discontinuity in Dielectric Planar Wave-Guide," IEEE Trans. Microwave Theory Tech. 34, 205-212 (1986). [CrossRef]
  17. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, "Use of grating theories in integrated optics," J. Opt. Soc. Am. A 18, 2865-2875 (2001). [CrossRef]
  18. C. Vassallo, "Finite-difference derivation of the reflectivity at output facets of dielectric waveguides with a highly diverging output beam," J. Opt. Soc. Am. A 15, 717-726 (1998). [CrossRef]
  19. H. Derudder, D. De Zutter, and F. Olyslager, "Analysis of waveguide discontinuities using perfectly matched layers," Electron. Lett. 34, 2138-2140 (1998). [CrossRef]
  20. H. Derudder, F. Olyslager, D. De Zutter, and S. Van den Berghe, "Efficient mode-matching analysis of discontinuities in finite planar substrates using perfectly matched layers," IEEE Trans. Antennas Propag. 49, 185-195 (2001). [CrossRef]
  21. K. Jiang and W. P. Huang, "Finite-difference-based mode-matching method for 3-D waveguide structures under semivectorial approximation," J. Lightwave Technol. 23, 4239-4248 (2005). [CrossRef]
  22. Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, and M. G. Young, "Polarization Rotation in Asymmetric Periodic Loaded Rib Wave-Guides," Appl. Phys. Lett. 59, 1278-1280 (1991). [CrossRef]
  23. T. Ando, T. Murata, H. Nakayama, J. Yamauchi, and H. Nakano, "Analysis and measurement of polarization conversion in a periodically loaded dielectric waveguide," IEEE Photon. Technol. Lett. 14, 1288-1290 (2002). [CrossRef]
  24. F. J. Mustieles, E. Ballesteros, and F. Hernandezgil, "Multimodal Analysis Method for the Design of Passive Te/Tm Converters in Integrated Wave-Guides," IEEE Photon. Technol. Lett. 5, 809-811 (1993). [CrossRef]
  25. W. P. Huang and C. L. Xu, "Simulation of 3-Dimensional Optical Wave-Guides by a Full-Vector Beam-Propagation Method," IEEE J. Quantum Electon. 29, 2639-2649 (1993). [CrossRef]
  26. W. C. Chew, J. M. Jin, and E. Michielssen, "Complex coordinate stretching as a generalized absorbing boundary condition," Microwave Opt. Technol. Lett. 15, 363-369 (1997). [CrossRef]
  27. L. F. Li, "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A 13, 1024-1035 (1996). [CrossRef]
  28. L. F. Li, "Multilayer Modal Method for Diffraction Gratings of Arbitrary Profile, Depth, and Permittivity," J. Opt. Soc. Am. A 10, 2581-2591 (1993). [CrossRef]
  29. P. L. Ho and Y. Y. Lu, "A bidirectional beam propagation method for periodic waveguides," IEEE Photon. Technol. Lett. 14, 325-327 (2002). [CrossRef]
  30. H. A. Jamid and M. Z. M. Khan, "3-D full-vectorial analysis of strong optical waveguide discontinuities using Pade approximants," IEEE J. Quantum Electron. 43, 343-349 (2007). [CrossRef]
  31. K. Kawano, T. Kitoh, M. Kohtoku, T. Takeshita, and Y. Hasumi, "3-D semivectorial analysis to calculate facet reflectivities of semiconductor optical waveguides based on the bi-directional method of line BPM (MoL-BPM)," IEEE Photon.Technol. Lett. 10, 108-110 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited