OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 18249–18263

Wideband leaky-mode resonance reflectors: Influence of grating profile and sublayers

Mehrdad Shokooh-Saremi and Robert Magnusson  »View Author Affiliations


Optics Express, Vol. 16, Issue 22, pp. 18249-18263 (2008)
http://dx.doi.org/10.1364/OE.16.018249


View Full Text Article

Enhanced HTML    Acrobat PDF (860 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We apply inverse numerical methods to design compact wideband reflectors in which a periodic silicon layer supports resonant leaky modes. Using particle swarm optimization to determine appropriate device thickness, period, and fill factors, we arrive at example reflector designs for both TE and TM polarized input light. As a properly configured grating profile provides added design freedom, we design reflectors with two and four subparts in the period. In TM polarization, a particular single-layer two-part reflector has 520 nm bandwidth whereas the four-part device reaches 600 nm bandwidth. In TE polarization, the corresponding numbers are 125 nm and 495 nm, respectively. We provide a qualitative explanation for the smaller TE-reflector bandwidth. We quantify the effects of deviation from the design parameters and compute the angular response of the elements. As the angle of incidence deviates from normal incidence, narrow transmission channels emerge in the response yielding a bandpass filter with low sidebands. The effects of adding a silica sublayer between a silicon substrate and the periodic silicon layer is investigated. It is found that a properly designed sublayer can extend the reflection bandwidth significantly.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.2440) Instrumentation, measurement, and metrology : Filters
(130.2790) Integrated optics : Guided waves
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: July 3, 2008
Revised Manuscript: October 14, 2008
Manuscript Accepted: October 21, 2008
Published: October 23, 2008

Citation
Mehrdad Shokooh-Saremi and Robert Magnusson, "Wideband leaky-mode resonance reflectors: Influence of grating profile and sublayers," Opt. Express 16, 18249-18263 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-18249


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Vincent and M. Neviere, "Corrugated dielectric waveguides: A numerical study of the second-order stop bands," Appl. Phys. 20, 345-351 (1979). [CrossRef]
  2. L. Mashev and E. Popov, "Zero order anomaly of dielectric coated gratings," Opt. Commun. 55, 377-380 (1985). [CrossRef]
  3. E. Popov, L. Mashev, and D. Maystre, "Theoretical study of anomalies of coated dielectric gratings," Opt. Acta 33, 607-619 (1986). [CrossRef]
  4. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, "Total reflection of light from a corrugated surface of a dielectric waveguide," Sov. J. Quantum Electron. 15, 886-887 (1985). [CrossRef]
  5. I. A. Avrutsky and V. A. Sychugov, "Reflection of a beam of finite size from a corrugated waveguide," J. Mod. Opt. 36, 1527-1539 (1989). [CrossRef]
  6. R. Magnusson and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992). [CrossRef]
  7. S. S. Wang and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. 32, 2606-2613 (1993). [CrossRef] [PubMed]
  8. Y. Ding and R. Magnusson, "Resonant leaky-mode spectral-band engineering and device applications," Opt. Express 12, 5661-5674 (2004). [CrossRef] [PubMed]
  9. S. Peng and M. Morris, "Resonant scattering from two-dimensional gratings," J. Opt. Soc. Am. A 13, 993-1005 (1996).
  10. W. Suh and S. Fan, "All-pass transmission or flattop reflection filters using a single photonic crystal slab," Appl. Phys. Lett. 84, 4905-4907 (2004). [CrossRef]
  11. S. Boonruang, A. Greenwell, and M. G. Moharam, "Multiline two-dimensional guided-mode resonant filters," Appl. Opt. 45, 5740-5747 (2006). [CrossRef] [PubMed]
  12. A.-L. Fehrembach, A. Talneau, O. Boyko, F. Lemarchand, and A. Sentenac, "Experimental demonstration of a narrowband, angular tolerant, polarization independent, doubly periodic resonant grating filter," Opt. Lett. 32, 2269-2271 (2007). [CrossRef] [PubMed]
  13. A. R. Cowan, P. Paddon, V. Pacradouni, and J. F. Young, "Resonant scattering and mode coupling in two-dimensional textured planar waveguides," J. Opt. Soc. Am. A. 18, 1160-1170 (2001). [CrossRef]
  14. D. Gerace and L. C. Andreani, "Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs," Phys. Rev. E 69, 056603 (2004). [CrossRef]
  15. Y. Ding and R. Magnusson, "Band gaps and leaky-wave effects in resonant photonic-crystal waveguides," Opt. Express 15, 680-694 (2007). [CrossRef] [PubMed]
  16. Y. Kanamori, T. Kitani, and K. Hane, "Guided-mode resonant grating filter fabricated on silicon-on-insulator substrate," Jpn. J. Appl. Phys. 45, 1883-1885 (2006). [CrossRef]
  17. O. Parriaux, V. A. Sychugov, and A. Tishchenko, "Coupling gratings as waveguide functional element," Pure Appl. Opt. 5, 453-469 (1996). [CrossRef]
  18. C.-L. Hsu, Y.-C. Liu, C.-M. Wang, M.-L. Wu, Y.-L. Tsai, Y.-H. Chou, C.-C. Lee, and J.-Y. Chang, "Bulk-micromachined optical filter based on guided-mode resonance in silicon-nitride membrane," J. Lightwave Technol. 24, 1922-1928 (2006). [CrossRef]
  19. V. A. Astratov, I. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. C. Skolnick, T. F. Krauss, and R. M. De La Rue, "Resonant coupling of near-infrared radiation to photonic band structure waveguides," J. Lightwave Technol. 17, 2050-2057 (1999). [CrossRef]
  20. M. T. Gale, K. Knop, and R. Morf, "Zero-order diffractive microstructures for security applications," Proc. SPIE 1210, 83-89 (1990). [CrossRef]
  21. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, "Normal-incidence guided-mode resonant grating filters: design and experimental demonstrations," Opt. Lett. 23, 700-702 (1998). [CrossRef]
  22. D. K. Jacob, S. C. Dunn, and M. G. Moharam, "Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams," J. Opt. Soc. Am. A 18, 2109-2120 (2001). [CrossRef]
  23. Z. S. Liu and R. Magnusson, "Concept of multiorder multimode resonant optical filters," IEEE Photon. Technol. Lett. 14, 1091-1093 (2002). [CrossRef]
  24. Y. Ding and R. Magnusson, "Use of nondegenerate resonant leaky modes to fashion diverse optical spectra," Opt. Express 12, 1885-1891 (2004). [CrossRef] [PubMed]
  25. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladding subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004). [CrossRef]
  26. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, "Broad-band mirror (1.12-1.62 μm) using a subwavelength grating," IEEE Photon. Technol. Lett. 16, 1676-1678 (2004). [CrossRef]
  27. R. Magnusson and M. Shokooh-Saremi, "Physical basis for wideband resonant reflectors," Opt. Express 16, 3456-3462 (2008). [CrossRef] [PubMed]
  28. S. Tibuleac and R. Magnusson, "Narrow-linewidth bandpass filters with diffractive thin-film layers," Opt. Lett. 26, 584-586 (2001). [CrossRef]
  29. R. Magnusson, Y. Ding, K. J. Lee, D. Shin, P. S. Priambodo, P. P. Young, and T. A. Maldonado, "Photonic devices enabled by waveguide-mode resonance effect in periodically modulated films," Proc. SPIE 5225, 20-34 (2003). [CrossRef]
  30. Y. Ding and R. Magnusson, "Doubly resonant single-layer bandpass optical filter," Opt. Lett. 29, 1135-1137 (2004). [CrossRef] [PubMed]
  31. R. Eberhart and J. Kennedy, "Particle swarm optimization," in Proceedings of IEEE Conference on Neural Networks (IEEE, 1995), pp. 1942-1948.
  32. M. Shokooh-Saremi and R. Magnusson, "Particle swarm optimization and its application to the design of diffraction grating filters," Opt. Lett. 32, 894-896 (2007). [CrossRef] [PubMed]
  33. T. K. Gaylord and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," Proc. IEEE 73, 894-937 (1985). [CrossRef]
  34. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995). [CrossRef]
  35. S. T. Peng, T. Tamir, and H. L. Bertoni, "Theory of periodic dielectric waveguides," IEEE Trans. Microwave Theory Tech. 23, 123-133 (1975). [CrossRef]
  36. R. Magnusson and T. K. Gaylord, "Equivalence of multiwave coupled-wave theory and modal theory for periodic-media diffraction," J. Opt. Soc. Am. 68, 1777-1779 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited