OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 18354–18361

Non reciprocal writing and chirality in femtosecond laser irradiated silica

B. Poumellec, M. Lancry, J.-C. Poulin, and S. Ani-Joseph  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 18354-18361 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (903 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We ascertain by measuring the surface topography of a cleaved sample in which damage lines have been written in volume by scanning with a femtosecond laser, that matter shearing occur along the laser track with alternating sign (scissor or chiral effect). We note that the shearing in the head of the laser tracks change its sign with the change in scanning direction (pen effect or non reciprocal writing). We also show that nano-structures in the head are nano-shearing, with all the same sign whatever the direction of writing may be. We suggest that symmetries revealed by the shearing mimic the laser induced electron plasma density structures and inform on their unusual symmetries induced by the laser beam structures.

© 2008 Optical Society of America

OCIS Codes
(160.6030) Materials : Silica
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.3450) Other areas of optics : Laser-induced chemistry

ToC Category:

Original Manuscript: March 19, 2008
Revised Manuscript: May 8, 2008
Manuscript Accepted: May 8, 2008
Published: October 24, 2008

B. Poumellec, M. Lancry, J.-C. Poulin, and S. Ani-Joseph, "Non reciprocal writing and chirality in femtosecond laser irradiated silica," Opt. Express 16, 18354-18361 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Niay, B. Poumellec, M. Lancry, and M. Douay, "Photosensitivity and treatments for enhancing the photosensitivity of silica-based glasses and fibers," in Photorefractive materials and their applications, P. Günter and J.-P. Huignard, eds., Springer Series 2, 535-560 (2007). [CrossRef]
  2. S. Lee, M. T. Trinh, J. R. Nam, K. S. Lim, M. Lee, and E. Kim, "Laser-induced defect centers and valence state change of Mn ions in sodium borate glasses," J. Lumin. 122, 142-145 (2007). [CrossRef]
  3. L. Sudrie, Docteur en Sciences, PhD thesis, Université de Paris Sud XI Orsay (2002).
  4. S. L. Qu, J. R. Qiu, C. J. Zhao, X. W. Jiang, H. D. Zeng, C. S. Zhu, and K. Hirao, "Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses," Appl. Phys. Lett. 84, 2046-2048 (2004). [CrossRef]
  5. A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, "Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles," Appl. Phys. A-Mat.Sci. Process. 80, 1647-1652 (2005). [CrossRef]
  6. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, "Femtosecond laser irradiation stress induced in pure silica," Opt. Express 11, 1070-1079 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-9-1070 [CrossRef] [PubMed]
  7. W. Yang, P. G. Kazansky, and Y. P. Svirko, "Non-reciprocal ultrafast laser writing," Nat. Photon. 2¸ 99-104 (2008). [CrossRef]
  8. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, "Ultrafast Processes for Bulk Modification of Transparent Materials," MRS bulletin 31, 620-625 (2006). [CrossRef]
  9. P. Günter and J. P. Huignard, eds., Photorefractive Materials and Their Applications I-II (Berlin, Springer Series 1989), Vol. 61-62.
  10. P. J. Bennett, S. Dhanjal, Y. P. Svirko, and N. I. Zheludev, "Nonreciprocity of natural rotatory power," Opt. Lett. 21, 1955-1957 (1996). [CrossRef] [PubMed]
  11. Y. Shimotsuma, P. G. Kazansky, J. R. Qiu, and K. Hirao, "Self-organized nanogratings in glass irradiated by ultrashort light pulses," Phys. Rev. Lett. 91, 247705 (2003). [CrossRef]
  12. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, "Form birefringence and negative index change created by femtosecond direct writing in transparent materials," Opt. Lett. 29, 119-121 (2004). [CrossRef] [PubMed]
  13. P. G. Kazansky, E. Bricchi, Y. Shimotsuma, J. Qiu, and K. Hirao, "3D Periodic Nano-Structures in Glass Irradiated by Ultrashort Light Pulses," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CFG5. [PubMed]
  14. E. Bricchi, W. Yang, P. Horak, C. Corbari, and P. G. Kazansky, "Characterization of Nanoscale Structures Observed in Femtosecond Laser Micromachining," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CMHH6. [PubMed]
  15. W. J. Yang, E. Bricchi, P. G. Kazansky, J. Bovatsek, and A. Y. Arai, "Self-assembled periodic subwavelength structures by femtosecond laser direct writing," Opt. Express 14, 10117-10124 (2006). [CrossRef] [PubMed]
  16. C. Hnatovsky, J. R. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica," Appl. Phys. Lett. 87, 14104-14106 (2005). [CrossRef]
  17. V. R. Bhardwaj, E. Simova, P. B. Corkum, D. M. Rayner, C. Hnatovsky, R. S. Taylor, B. Schreder, M. Kluge, and J. Zimmer, "Femtosecond laser-induced refractive index modification in multicomponent glasses," J. Appl. Phys. 97, 083102 (2005). [CrossRef]
  18. M. Birnbaum, "Semiconductor Surface Damage Produced by Ruby Lasers," J. Appl. Phys. 36, 3688 (1965). [CrossRef]
  19. Z. Guosheng, P. M. Fauchet, and A. E. Siegman, "Growth of spontaneous periodic surface structures on solids during laser illumination," Phys. Rev. B 26, 5366-5381 (1982). [CrossRef]
  20. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, "Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass," Phys. Rev. B 27, 1155-1172 (1983). [CrossRef]
  21. A. Borowiec and H. K. Haugen, "Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses," Appl. Phys. Lett. 82, 4462-4464 (2003). [CrossRef]
  22. A. Y. Vorobyev, V. S. Makin, and C. Guo, "Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals," J. Appl. Phys. 101, 034903 (2007). [CrossRef]
  23. R. Wagner, J. Gottmanna, A. Horna, and E. W. Kreutz, "Subwavelength ripple formation induced by tightly focused femtosecond laser radiation," Appl. Surf. Sci. 252, 8576-8579 (2006). [CrossRef]
  24. S. Theppakuttai and S. Chen, "Submicron ripple formation on glass surface upon laser-nanosphere interaction," J. Appl. Phys. 95, 5049-5052 (2004). [CrossRef]
  25. M. Soileau, "Ripple structures associated with ordered surface defects in dielectrics," IEEE J. Quantum Electron. 20, 464-467 (1984). [CrossRef]
  26. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, "Optically Produced Arrays of Planar Nanostructures inside Fused Silica," Phys. Rev. Lett. 96, 057404 (2006). [CrossRef] [PubMed]
  27. C. Hnatovsky, E. Simova, R. P. Pattathil, D. M. Rayner, P. B. Corkum, and R. S. Taylor, " Applications of Femtosecond Laser-Induced Self-Assembled Nanocracks in Fused Silica Glass," in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (CD) (Optical Society of America, 2007), paper BTuD1.
  28. P. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and H. Kazuyuki, "'Quill' writing with ultrashort light pulses in transparent materials," Appl. Phys. Lett. 90, 151120 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited