OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 18371–18378

Imaging with extended focal depth by means of the refractive light sword optical element

J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc  »View Author Affiliations


Optics Express, Vol. 16, Issue 22, pp. 18371-18378 (2008)
http://dx.doi.org/10.1364/OE.16.018371


View Full Text Article

Enhanced HTML    Acrobat PDF (330 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The paper presents first experiments with a refractive light sword optical element (LSOE). A refractive version of the LSOE was prepared in photoresist by gray scale photolithography. Then we examined chromatic aberrations of the produced element and compared them with those corresponding to two different lenses. For this purpose we performed two experiments, the first one where white light illumination was used and the latter one by the help of monochromatic illumination with three different wavelengths. The obtained results lead to the conclusion that the refractive LSOE does not exhibit significant chromatic aberrations and can be successfully used for imaging with extended depth of focus in polychromatic illumination.

© 2008 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(110.2990) Imaging systems : Image formation theory
(110.6880) Imaging systems : Three-dimensional image acquisition
(220.3620) Optical design and fabrication : Lens system design

ToC Category:
Imaging Systems

History
Original Manuscript: April 30, 2008
Revised Manuscript: June 30, 2008
Manuscript Accepted: October 6, 2008
Published: October 24, 2008

Citation
J. Ares García, S. Bará, M. Gomez García, Z. Jaroszewicz, A. Kolodziejczyk, and K. Petelczyc, "Imaging with extended focal depth by means of the refractive light sword optical element," Opt. Express 16, 18371-18378 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-18371


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Mino and Y. Okano, "Improvement in the optical transfer function of a defocused optical system through the use of shaded apertures," Appl. Opt. 10, 2219-2225 (1971). [CrossRef] [PubMed]
  2. J. Ojeda-Castaneda, P. Andres, and A. Diaz, "Annular apodizers for low sensitivity to defocus and to spherical aberration," Opt. Lett. 11, 487-489 (1986). [CrossRef] [PubMed]
  3. J. Ojeda-Castaneda, E. Tepichin, and A. Diaz, "Arbitrary high focal depth with a quasioptimum real and positive transmittance apodizer," Appl. Opt. 28, 2666-2670 (1989). [CrossRef] [PubMed]
  4. J. Ojeda-Castaneda and L. R. Berriel-Valdos, "Zone plate for arbitrarily high focal depth," Appl. Opt. 29, 994-997 (1990). [CrossRef] [PubMed]
  5. E. R. Dowski, Jr. and W. T. Cathey, "Extended depth of field through wave-front coding," Appl. Opt. 34, 1859-1866 (1995). [CrossRef] [PubMed]
  6. S. Bradburn, W.T. Cathey, and E.R. Dowski, Jr., "Realizations of focus invariance in optical-digital systems with wave-front coding," Appl. Opt. 36, 9157-9166 (1997). [CrossRef]
  7. H. B. Wach, E. R. Dowski, Jr., and W. T. Cathey, "Control of chromatic focal shift through wave-front coding," Appl. Opt. 37, 5359-5367 (1998). [CrossRef]
  8. S. C. Tucker, W.T. Cathey, and E. R. Dowski, Jr., "Extended depth of field and aberration control for inexpensive digital microscope systems," Opt. Express 4, 467-474 (1999). [CrossRef] [PubMed]
  9. S. S. Sherif, W. T. Cathey, and E. R. Dowski, "Phase plate to extend the depth of field of incoherent hybrid imaging systems," Appl. Opt. 43, 2709-2721 (2004). [CrossRef] [PubMed]
  10. N. Davidson, A. A. Friesem, and E. Hasman, "Holographic axilens: high resolution and long focal depth," Opt. Lett. 16, 523-525 (1991). [CrossRef] [PubMed]
  11. B.-Z. Dong, J. Liu, B.-Y. Gu, and G.-Z. Yang, "Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution," J. Opt. Soc. Am. A 18, 1465-1470 (2001). [CrossRef]
  12. J.-S. Ye, B.-Z. Dong, B.-Y. Gu, G.-Z. Yang, and S.-T. Liu, "Analysis of a closed-boundary axilens with long focal depth and high transverse resolution based on a rigorous electromagnetic theory," J. Opt. Soc. Am. A 19, 2030-2035 (2002). [CrossRef]
  13. F. Di, Y. Yingbai, J. Guofan, and W. Minxian, "Rigorous concept for the analysis of diffractive lenses with different axial resolution and high lateral resolution," Opt. Express 17, 1987-1994 (2003). [CrossRef]
  14. J. Lin, J. Liu, J. Ye, and S. Liu, "Design of microlenses with long focal depth based on general focal length function," J. Opt. Soc. Am. A (to be published).
  15. J. Ares, R. Flores, S. Bara, and Z. Jaroszewicz, "Presbyopia compensation with a Quartic Axicon," Optometry and Vision Sc. 82, 1071-1078 (2005). [CrossRef]
  16. J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bara, "Nonparaxial design of generalized axicons," Appl. Opt. 31, 5326-5330 (1992). [CrossRef] [PubMed]
  17. J. Sochacki, Z. Jaroszewicz, L.R. Staroński, and A. Kolodziejczyk, "Annular-aperture logarithmic axicon," J. Opt. Soc. Am. A 10, 1765-1768 (1993). [CrossRef]
  18. W. Chi, and N. George, "Electronic imaging using a logarithmic asphere," Opt. Lett. 26, 875-877 (2001). [CrossRef]
  19. M. A. Golub, V. Shurman, and I. Grossinger, "Extended focus diffractive optical element for Gaussian laser beams," Appl. Opt. 45, 144-150 (2006). [CrossRef] [PubMed]
  20. G.-m. Dai, "Optical surface optimization for the correction ofpresbyopia," Appl. Opt. 45, 4184-4195 (2006). [CrossRef] [PubMed]
  21. A. Flores, M. R. Wang, and J. J. Yang, "Achromatic hybrid refractive-diffractive lens with extended depth of focus," Appl. Opt. 43, 5618-5630 (2004). [CrossRef] [PubMed]
  22. Z. Liu, A. Flores, M. R. Wang, and J. J. Yang, "Diffractive infrared lens with extended depth of focus," Opt. Eng. 46, 018002 (1-9) (2007). [CrossRef]
  23. J. Campos, J. C. Escalera, O. Lopez-Coronado, R. Gimeno and M. J. Yuzuel, "Depth of focus increase by multiplexing programmable diffractive lenses," Opt. Express 14, 10207-10219 (2006). [CrossRef] [PubMed]
  24. E. E. Garcia-Guerrero, E. R. Mendez, H. M. Escamilla, T. A. Leskova, and A. A. Maradudin, "Design and fabrication of random phase diffusers for extending the depth of focus," Opt. Express 15, 910-923 (2007). [CrossRef] [PubMed]
  25. G. Mikuła, Z. Jaroszewicz, A. Kolodziejczyk, K. Petelczyc and M. Sypek, "Imaging with extended focal depth by means of lenses with radial and angular modulation," Opt. Express 15, 9184-9193 (2007). [CrossRef]
  26. D. Mas, J. Espinosa, J. Perez and C. Illueca, "Three dimensional analysis of chromatic aberration in diffractive elements with extended depth of focus," Opt. Express 15, 17842-17854 (2007). [CrossRef] [PubMed]
  27. A. Kołodziejczyk, S. Bara, Z. Jaroszewicz, and M. Sypek, "The light sword optical element - a new diffraction structure with extended depth of focus," J. Mod. Opt. 37, 1283-1286 (1990). [CrossRef]
  28. G. Mikuła, A. Kolodziejczyk, M. Makowski, C. Prokopowicz, and M. Sypek, "Diffractive elements for imaging with extended depth of focus," Opt. Eng. 44, 058001(1-7) (2005). [CrossRef]
  29. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), Chap. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (181 KB)      QuickTime
» Media 2: MOV (217 KB)      QuickTime
» Media 3: MOV (692 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited