OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 18417–18425

Enhanced fluorescence and near-field intensity for Ag nanowire/nanocolumn arrays: evidence for the role of surface plasmon standing waves

Shy-Hauh Guo, Julia J Heetderks, Hung-Chih Kan, and Raymond J Phaneuf  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 18417-18425 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (4314 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use scanning fluorescence microscopy and electron beam lithography to probe the mechanism of fluorescence enhancement by periodic arrays of silver nanostructures, determining the optimum size and spacing of both Ag nanowires and Ag nanocolumns for incident light of different wavelengths and polarizations. Finite difference time domain (FDTD) calculations show a systematic variation with spatial period and incident polarization of the local electric field above the surface of the arrays which correlate well with that of the measured fluorescence enhancement, but a lack of a simple proportionality indicates that the dependence of the radiative and nonradiative decay rates on array geometry must be included in models for this effect. The dependence of the enhancement on spatial period and polarization indicates the importance of surface plasmon standing waves in this effect.

© 2008 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(240.6680) Optics at surfaces : Surface plasmons
(260.2510) Physical optics : Fluorescence
(160.4236) Materials : Nanomaterials
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: July 22, 2008
Revised Manuscript: October 15, 2008
Manuscript Accepted: October 23, 2008
Published: October 24, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Shy-Hauh Guo, Julia J. Heetderks, Hung-Chih Kan, and Raymond J. Phaneuf, "Enhanced fluorescence and near-field intensity for Ag nanowire/nanocolumn arrays: evidence for the role of surface plasmon standing waves," Opt. Express 16, 18417-18425 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003). [CrossRef]
  2. M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman-spectra of pyridine at a silver electrode," J. Am. Chem. Soc. 99, 5215-5217 (1977). [CrossRef]
  3. D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman Spectroelectrochemistry.1. Heterocyclic, Aromatic, And Aliphatic-Amines Adsorbed On Anodized Silver Electrode," J. Electroanal. Chem. 84, 1-20 (1977). [CrossRef]
  4. J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Enhanced emission of highly labeled DNA oligomers near silver metallic surfaces," Anal. Chem. 75, 4408-4414 (2003). [CrossRef] [PubMed]
  5. N. Stich, A. Gandhum, V. Matushin, C. Mayer, G. Bauer, and T. Schalkhammer, "Nanofilms and nanoclusters: Energy sources driving fluorophores of biochip bound labels," J. Nanosci. Nanotechnol. 1, 397-405 (2001). [CrossRef]
  6. P. J. Tarcha, J. DeSaja-Gonzalez, S. Rodriguez-Llorente, and R. Aroca, "Surface-enhanced fluorescence on SiO2-coated silver island films," Appl. Spectrosc. 53, 43-48 (1999). [CrossRef]
  7. T.-H. Wang, S. Masset, and C.-M. Ho, "A zepto mole DNA micro sensor," in Micro Electro Mechanical Systems, 2001. The 14th IEEE International Conference on MEMS., (IEEE, 2001), 431-434.
  8. J. Fu, B. Park, G. Siragusa, L. Jones, R. Tripp, Y. Zhao, and Y.-J. Cho, "An Au/Si hetero-nanorod-based biosensor for Salmonella detection," Nanotechnology 19, 155502 (2008). [CrossRef] [PubMed]
  9. U. Kreibig, B. Schmitz, and H. D. Breuer, "Separation of plasmon-polariton modes of small metal particles," Phys. Rev. B 36, 5027-5030 (1987). [CrossRef]
  10. J. R. Lakowicz, "Radiative decay engineering: Biophysical and biomedical applications," Anal. Biochem. 298, 1-24 (2001). [CrossRef] [PubMed]
  11. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, "Radiative decay engineering: the role of photonic mode density in biotechnology," J. Phys. D-Appl. Phys 36, R240-R249 (2003). [CrossRef] [PubMed]
  12. T. Liebermann and W. Knoll, "Surface-plasmon field-enhanced fluorescence spectroscopy," Colloid Surf. A-Physicochem.Eng. Asp. 171, 115-130 (2000). [CrossRef]
  13. K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of molecular fluorescence near the surface of colloidal metal films," Anal. Chem. 70, 3898-3905 (1998). [CrossRef] [PubMed]
  14. F. Yu, D. F. Yao, and W. Knoll, "Surface plasmon field-enhanced fluorescence spectroscopy studies of the interaction between an antibody and its surface-coupled antigen," Anal. Chem. 75, 2610-2617 (2003). [CrossRef] [PubMed]
  15. D. R. Matthews, H. D. Summers, K. Njoh, S. Chappell, R. Errington, and P. Smith, "Optical antenna arrays in the visible range," Opt. Express 15, 3478-3487 (2007). [CrossRef] [PubMed]
  16. S. H. Guo, S. J. Tsai, H. C. Kan, D. H. Tsai, M. R. Zachariah, and R. J. Phaneuf, "The effect of an active substrate on nanoparticle-enhanced fluorescence," Adv. Mater. 20, 1424-1428 (2008). [CrossRef]
  17. T. D. Corrigan, S. Guo, R. J. Phaneuf, and H. Szmacinski, "Enhanced fluorescence from periodic arrays of silver nanoparticles," J. Fluoresc. 15, 777-784 (2005). [CrossRef] [PubMed]
  18. T. Pistor, "Generalizing the TEMPEST FDTD Electro-magnetic Simulation Program," UCB/ERL M97/52 (EECS Department, UC Berkeley, Berkeley, 1997).
  19. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003). [CrossRef]
  20. R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science 294, 1901-1903 (2001). [CrossRef] [PubMed]
  21. A. Hessel and A. A. Oliner, "A new theory of Wood's anomalies on optical gratings," Appl. Opt. 4, 1275 (1965). [CrossRef]
  22. A. Kobyakov, A. Mafi, A. R. Zakharian, S. A. Darmanyan, and K. B. Sparks, "Fundamental and higher-order Bloch surface plasmons in planar bimetallic gratings on silicon and glass substrates," J. Opt. Soc. Am. B-Opt.Phys. 25, 1414 (2008). [CrossRef]
  23. C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003). [CrossRef]
  24. A. Parfenov, I. Gryczynski, J. Malicka, C. D. Geddes, and J. R. Lakowicz, "Enhanced fluorescence from fluorophores on fractal silver surfaces," J. Phys. Chem. B 107, 8829-8833 (2003). [CrossRef] [PubMed]
  25. S. Gerber, F. Reil, U. Hohenester, T. Schlagenhaufen, J. R. Krenn, and A. Leitner, "Tailoring light emission properties of fluorophores by coupling to resonance-tuned metallic nanostructures," Phys. Rev. B 75, 073404 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited