OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 18485–18494

Controlling vertical optical confinement in two-dimensional surface-emitting photonic-crystal lasers by shape of air holes

Yoshitaka Kurosaka, Kyosuke Sakai, Eiji Miyai, and Susumu Noda  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 18485-18494 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (480 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We use the finite-difference time domain method to calculate the vertical optical confinement, which corresponds to the quality factor in the vertical direction, of two-dimensional photonic-crystal (PC) lasers as a function of the asymmetry of the shape of the air holes that form the PC. The vertical optical confinement for triangular air holes, which give the highest output power measured thus far, is decreased by two thirds when V-shaped air holes are used. In contrast, the vertical optical confinement becomes infinite for rhomboid air holes. The vertical optical confinement decreases when the air holes are deformed such that areas of opposing electric fields exist in regions of the PC with different dielectric constants. In this way, the vertical optical confinement can be controlled by changing the shape of the air holes.

© 2008 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 5, 2008
Revised Manuscript: October 10, 2008
Manuscript Accepted: October 12, 2008
Published: October 24, 2008

Yoshitaka Kurosaka, Kyosuke Sakai, Eiji Miyai, and Susumu Noda, "Controlling vertical optical confinement in two-dimensional surface-emitting photonic-crystal lasers by shape of air holes," Opt. Express 16, 18485-18494 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Appl. Phys. Lett. 75, 316-318 (1999). [CrossRef]
  2. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999). [CrossRef]
  3. K. Inoue, M. Sasada, J. Kawamata, K. Sakoda, and J. W. Haus, "A two-dimensional photonic crystal laser," Jpn. J. Appl. Phys. 38, L157-L159 (1999). [CrossRef]
  4. M. Meier, A. Dodabalapur, J. A. Rogers, R. E. Slusher, A. Mekis, A. Timko, C. A. Murray, R. Ruel, and O. Nalamasu, "Emission characteristics of two-dimensional organic photonic crystal lasers fabricated by replica molding," J. Appl. Phys. 86, 3502-3507 (1999). [CrossRef]
  5. M. Notomi, H. Suzuki, and T. Tamamura, "Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps," Appl. Phys. Lett. 78, 1325-1327 (2001). [CrossRef]
  6. H. -Y. Ryu, S. -H. Kwon, Y. - J. Lee, Y. -H. Lee, and J. - S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002). [CrossRef]
  7. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, "Multidirectionally distributed feedback photonic crystal lasers," Phys. Rev. B 65, 195306 1-8 (2002). [CrossRef]
  8. I. Vurgaftman and J. R. Meyer, "Design Optimization for High-Brightness Surface-Emitting Photonic-Crystal Distributed-Feedback Lasers," IEEE J. Quantum Electron. 39, 689-700 (2003). [CrossRef]
  9. K. Sakai, E. Miyai, and S. Noda, "Coupled-wave model for square-lattice two-dimensional photonic crystal with transverse-electric-like mode," Appl. Phys. Lett. 89, 021101 1-3 (2006). [CrossRef]
  10. K. Sakai, E. Miyai, and S. Noda, "Two-dimensional coupled wave theory for square-lattice photonic-crystal lasers with TM-polarization," Opt. Express 15, 3981-3990 (2007). [CrossRef] [PubMed]
  11. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design," Science 293, 1123-1125 (2001). [CrossRef] [PubMed]
  12. M. Yokoyama and S. Noda, "Polarization Mode Control of Two-Dimensional Photonic Crystal Laser Having a Square Lattice Structure," IEEE J. Quantum Electron. 39, 1074-1080 (2003). [CrossRef]
  13. E. Miyai and S. Noda, "Phase-shift effect on a two-dimensional surface-emitting photonic-crystal laser," Appl. Phys. Lett. 86, 111113 1-3 (2005). [CrossRef]
  14. E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, "Lasers producing tailored beams," Nature 441, 946 (2006). [CrossRef] [PubMed]
  15. H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, "GaN Photonic-Crystal Surface-Emitting Laser at Blue-Violet Wavelengths," Science 319, 445-447 (2008); published online 20 December 2007 (10.1126/science.1150413). [CrossRef]
  16. D. Ohnishi, T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express 12, 1562-1568 (2004). [CrossRef] [PubMed]
  17. W. Kunishi, D. Ohnishi, E. Miyai, K. Sakai, and S. Noda, "High-Power Single-Lobed Surface-Emitting Photonic-Crystal Laser," in Proceedings of the Conference on Lasers and Electro-optics, Paper CMKK1 (2006).
  18. E. Miyai, K. Sakai, W. Kunishi, D. Ohnishi, and S. Noda "Linearly-polarized single-lobed beams by photonic-crystal lasers with triangular lattice points," to be submitted.
  19. Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, "Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes," Appl. Phys. Lett. 82, 1661-1663 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited