OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 18495–18504

A programmable light engine for quantitative single molecule TIRF and HILO imaging

Marcel van’t Hoff, Vincent de Sars, and Martin Oheim  »View Author Affiliations


Optics Express, Vol. 16, Issue 22, pp. 18495-18504 (2008)
http://dx.doi.org/10.1364/OE.16.018495


View Full Text Article

Enhanced HTML    Acrobat PDF (3507 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a simple yet powerful implementation of objective-type total internal reflection fluorescence (TIRF) and highly inclined and laminated optical sheet (HILO, a type of dark-field) illumination. Instead of focusing the illuminating laser beam to a single spot close to the edge of the microscope objective, we are scanning during the acquisition of a fluorescence image the focused spot in a circular orbit, thereby illuminating the sample from various directions. We measure parameters relevant for quantitative image analysis during fluorescence image acquisition by capturing an image of the excitation light distribution in an equivalent objective back-focal plane (BFP). Operating at scan rates above 1 MHz, our programmable light engine allows directional averaging by circular spinning the spot even for sub-millisecond exposure times. We show that restoring the symmetry of TIRF/HILO illumination reduces scattering and produces an evenly lit field-of-view that affords on-line analysis of evanescent-field excited fluorescence without pre-processing. Utilizing crossed acousto-optical deflectors, our device generates arbitrary intensity profiles in BFP, permitting variable-angle, multi-color illumination, or objective lenses to be rapidly exchanged.

© 2008 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(170.1530) Medical optics and biotechnology : Cell analysis
(180.2520) Microscopy : Fluorescence microscopy
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Microscopy

History
Original Manuscript: September 5, 2008
Revised Manuscript: October 14, 2008
Manuscript Accepted: October 19, 2008
Published: October 24, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Marcel van 't Hoff, Vincent de Sars, and Martin Oheim, "A programmable light engine for quantitative single molecule TIRF and HILO imaging," Opt. Express 16, 18495-18504 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-18495


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. L. Stout and D. Axelrod, "Evanescent field excitation of fluorescence by epi-illumination microscopy," Appl. Opt. 28, 5237-5242 (1989). [CrossRef] [PubMed]
  2. M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa. "Highly inclined thin illumination enables clear single-molecule imaging in cells," Nat.Methods 5, 159-161 (2008). [CrossRef] [PubMed]
  3. H. Chew, D. S. Wang, and M. Kerker, "Elastic scattering of evanescent electromagnetic waves," Appl. Opt. 18, 2679-87 (1979). [CrossRef] [PubMed]
  4. A. Rohrbach, "Observing secretory granules with a multiangle evanescent-wave microscope," Biophys. J. 78, 2641-54 (2000). [CrossRef] [PubMed]
  5. F. Schapper, J. T. Gonçalves, and M. Oheim, "Fluorescence imaging with two-photon evanescent-wave excitation," Eur. Biophys. J. 32, 635-643 (2003). [CrossRef] [PubMed]
  6. M. Oheim and F. Schapper, "Non-linear evanescent-field imaging," J. Phys. D: Appl. Phys. 38, R185-R197 (2005). [CrossRef]
  7. A. L. Mattheyses and D. Axelrod, "Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence," J Biomed Opt. 11,014006A (2006). [CrossRef]
  8. A. L. Mattheyses and D. Axelrod, "Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle," Microsc. Res. Tech. 69, 642-647 (2006). [CrossRef] [PubMed]
  9. R. Fiolka, Y. Belyaev, H. Ewers, and A. Stemmer, "Even illumination in total internal reflection fluorescence microscopy using laser light," Microsc. Res. Tech. 71, 45-50 (2007). [CrossRef] [PubMed]
  10. F. de Fornel, Evanescent waves: from Newtonian Optics to Atomic Optics, (Berlin, Heidelberg, New York, Springer, 2000) ISBN 3540658459.
  11. N. K. Lee, A. N. Kapanidis, H. R. Koh,  et al, "Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances," Biophys. J. 92, 303-312 (2007). [CrossRef]
  12. M. Predko, Progamming and Customizing PICmicro® Microcontrollers (McGraw-Hill, New York, 2000)
  13. MicrochipPIC 16F87XA data sheet and MPLAB Integrated Development Environment, www.microchip.com
  14. gcc C++ compiler for Windows, http://www.mingw.org/
  15. Trolltech, Qt graphical library, www.trolltech.com
  16. D. Li, N. Ropert, A. Koulakoff, C. Giaume, and M. Oheim, "Lysosomes are the major vesicular compartment undergoing Ca2+-regulated exocytosis from cortical astrocytes," J. Neurosci. 28, 7648-7658 (2008). [CrossRef] [PubMed]
  17. J. D. Humphries, P. Wang, C. Streuli, B. Geiger, M. J. Humphries, and C. Ballestrem, "Vinculin controls focal adhesion formation by direct interactions with talin and actin," J. Cell Biol. 179, 1043-1057 (2007). [CrossRef] [PubMed]
  18. H. Schneckenburger, "Total internal reflection fluorescence microscopy: technical innovations and novel applications," Curr Opin Biotechnol. 16, 13-18 (2005). [CrossRef] [PubMed]
  19. W. P. Ambrose, P. M. Goodwin, and J. P. Nolan "Single-molecule detection with total internal reflection 20. excitation: comparing signal-to-background and total signals in different geometries," Cytometry 36224-31 (1999).
  20. P. B. Conibear and C. R. Bagshaw, "A comparison of optical geometries for combined flash photolysis and total internal reflection fluorescence microscopy," J. Microsc. 200, 218-29 (2000).
  21. B. P. Ölveczky, N. Periasamy, and A. S. Verkman, "Mapping fluorophore distributions in three dimensions by quantitative multiple angle-total internal reflection fluorescence microscopy," Biophys J. 73,2836-47 (1997). [CrossRef] [PubMed]
  22. Y. Kawano, C. Abe, T. Kaneda, Y. Aono, K. Abe, and K. Tamura, "High-numerical aperture objective lenses and optical system improved objective-type total internal reflection fluorescence microscopy," Proc. SPIE 4098, 142-53 (2000). [CrossRef] [PubMed]
  23. O. Gilko, G. D. Reddy, B. Anvari, W. E. Brownell, and P. Saggau, "Standing wave total internal reflection fluorescence microscopy to measure the size of nanostructures in living cells," J. Biomed. Opt. 11, 064013 (2006). [CrossRef]
  24. E. Chung, D. K. Kim, and P. T. C. So, "Extended resolution wide-field optical imaging: objective-launched standing wave total internal reflection fluorescence microscopy," Opt. Lett. 31, 945-947 (2006). [CrossRef]
  25. M. R. Beversluis, G. W. Bryant, and S. J. Stranick, "Effects of inhomogeneous fields in superresolving structured illumination microscopy," 25, 1371-1377 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited