OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 18514–18523

Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors

Yinlan Ruan, Tze Cheung Foo, Stephen Warren-Smith, Peter Hoffmann, Roger C. Moore, Heike Ebendorff-Heidepriem, and Tanya M. Monro  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 18514-18523 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (583 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Glass microstructured optical fibers have been rendered biologically active for the first time via the immobilization of antibodies within the holes in the fiber cross-section. This has been done by introducing coating layers to the internal surfaces of soft glass fibers. The detection of proteins that bind to these antibodies has been demonstrated experimentally within this system via the use of fluorescence labeling. The approach combines the sensitivity resulting from the long interaction lengths of filled fibers with the selectivity provided by the use of antibodies.

© 2008 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(300.1030) Spectroscopy : Absorption
(300.2140) Spectroscopy : Emission

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 9, 2008
Revised Manuscript: October 21, 2008
Manuscript Accepted: October 21, 2008
Published: October 24, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Yinlan Ruan, Tze Cheung Foo, Stephen Warren-Smith, Peter Hoffmann, Roger C. Moore, Heike Ebendorff-Heidepriem, and Tanya M. Monro, "Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors," Opt. Express 16, 18514-18523 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-15-5883. [CrossRef] [PubMed]
  2. L. Rindorf, P. E. Hoiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-5 (2006). [CrossRef] [PubMed]
  3. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C.H.B. Cruz, and M.C.J. Large, "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-13056. [CrossRef] [PubMed]
  4. Y. Zhu, H. Du, and R. Bise, "Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing," Opt. Express 14, 3541-3546 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3541. [CrossRef] [PubMed]
  5. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-4080. [CrossRef] [PubMed]
  6. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, "Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers," Opt. Express 15, 17819-17826 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17819. [CrossRef] [PubMed]
  7. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224-8231 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-18-8224. [CrossRef] [PubMed]
  8. J. Cheng, C. Wei, K. Hsu, and T. Young, "Direct-write laser micromachining and universal surface modification of PMMA for device development," Sens. Actuators B,  99, 186-196 (2003). [CrossRef]
  9. G. Emiliyanov, J. B. Jensen, and O. Bang, "Localized biosensing with Topas microstructured polymer optical fiber," Opt. Lett. 32, 460-462 (2007). [CrossRef] [PubMed]
  10. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, "Opening up optical fibres," Opt. Express 15, 11843-11848 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-19-11843. [CrossRef] [PubMed]
  11. C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. B. Cruz, "Towards practical liquid and gas sensing with photonic crystal fibers: side access to the fibre microstructured and single-mode liquid-core fibre," Meas. Sci. Technol. 18, 3075-3081 (2007). [CrossRef]
  12. P. D. Sawant, G. S. Watson, S. Myhra, and D. V. Nicolau, "Hierarchy of DNA immobilization and hybridization on poly-L-lysine using an atomic force microscopy study," J. Nanosci. Nanotechnol. 5, 951-957 (2005). [CrossRef] [PubMed]
  13. J. Debs, H. Ebendorff-Heidepriem, J. Quinton, and T. M. Monro, "A Fundamental study into the surface functionalisation of soft glass microstructured optical fibres via silane coupling agents," accepted for publication, J. Lightwave Technol. (2008).
  14. S. Gosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby "Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber," Phys. Rev. Lett. 97, 023603 (2006). [CrossRef]
  15. H. Ebendorff-Heidepriem and T. M. Monro, "Extrusion of complex preforms for microstructured optical fibers," Opt. Express 15, 15086-15092 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15086. [CrossRef] [PubMed]
  16. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, "Suspended nanowires: fabrication, design, and characterization of fibers with nanoscale cores," submitted toNature Photonics.
  17. S. AfsharV. S. C. Warren-Smith, and T. M. Monro, "Enhancement of fluorescence-based sensing using microstructured optical fibers," Opt. Express 15, 17891-17901 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17891. [CrossRef] [PubMed]
  18. S. K. Bhatia, L. C. Shriver-Lake, K. J. Prior, J. H. Georger, J. M. Calvert, R. Bredehorst, and F. S. Ligler, "Use of thiol-terminal silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces," Anal. BioChem,  178, 408-413 (1989). [CrossRef] [PubMed]
  19. T. M. Monro, Y. Ruan, H. Ebendoff-Heideprien, H. Foo, P. Hoffmann, and R. C. Moore, "Antibody immobilization with glass microstructured fibers: a route to sensitive and selective biosensor," Proc. Internat. Soc. Opt. Engin. (SPIE) 17, 70046Q-1-4 (2008).
  20. S. C. Warren-Smith, S. Afshar, and T. M. Monro, "Highly-efficient fluorescence sensing using microstructured optical fibres; side access and thin-layer configurations," Proc. Internat. Soc. Opt. Engin. (SPIE) 17, 70041X-1-4 (2008).
  21. Http://www.invitrogen.com/site/us/en/home/brands/Product-Brand/Qdot/Technology-Overview.html.
  22. Http://probes.invitrogen.com/products/qdot/.
  23. J. R. Crowther, ELISA: Theory and Practice (Humana, 1995).
  24. S. Afshar, Y. Ruan, and T. M. Monro, "Enhanced fluorescence sensing using microstructured optical fibers: a comparison of forward and backward collection modes," Opt. Lett. 33, 1743-1745 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited