OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 22 — Oct. 27, 2008
  • pp: 18545–18550

Superscatterer: Enhancement of scattering with complementary media

Tao Yang, Huanyang Chen, Xudong Luo, and Hongru Ma  »View Author Affiliations

Optics Express, Vol. 16, Issue 22, pp. 18545-18550 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (559 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the concept of complementary media, we propose a novel design which can enhance the electromagnetic wave scattering cross section of an object so that it looks like a scatterer bigger than the scale of the device. Such a “superscatterer” is realized by coating a negative refractive material shell on a perfect electrical conductor cylinder. The scattering field is analytically obtained by Mie scattering theory, and confirmed by full-wave simulations numerically. Such a device can be regarded as a cylindrical concave mirror for all angles.

© 2008 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(230.0230) Optical devices : Optical devices
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:

Original Manuscript: September 22, 2008
Revised Manuscript: October 14, 2008
Manuscript Accepted: October 14, 2008
Published: October 24, 2008

Tao Yang, Huanyang Chen, Xudong Luo, and Hongru Ma, "Superscatterer: Enhancement of scattering with complementary media," Opt. Express 16, 18545-18550 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777-80 (2006). [CrossRef] [PubMed]
  2. J. B. Pendry, D. Schurig, and D. R. Smith,"Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  3. A. Greenleaf, M. Lassas, and G. Uhlmann, Physiol. Meas. "Anisotropic conductivities that cannot be detected by EIT, " Physiol. Meas. 24, 413-9 (2003). [CrossRef] [PubMed]
  4. D. Schurig, J. J. Mock, B.J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-980 (2006). [CrossRef] [PubMed]
  5. A. Al`u and N. Engheta,"Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005). [CrossRef]
  6. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006). [CrossRef]
  7. Z. Jacob, L. A. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-56 (2006). [CrossRef] [PubMed]
  8. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photon. 1, 224-7 (2007). [CrossRef]
  9. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations," Photon. Nanostruct.: Fundam. Applic. 6, 87-95 (2008). [CrossRef]
  10. H. Y. Chen and C. T. Chan,"Transformation media that rotate electromagnetic fields," Appl. Phys. Lett. 90, 241105 (2007). [CrossRef]
  11. H. Chen, B.-I. Wu, B. Zhang, and J. A. Kong,"Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007). [CrossRef] [PubMed]
  12. Z. Ruan, M. Yan, C.W. Neff, and M. Qiu,"Ideal Cylindrical Cloak: Perfect but Sensitive to Tiny Perturbations," Phys. Rev. Lett. 99, 113903 (2007). [CrossRef] [PubMed]
  13. X. H. Zhang, H. Y. Chen, X. D. Luo, and H. R. Ma,"Transformation media that turn a narrow slit into a large window," Opt. Express 16, 11764-8 (2008). [CrossRef] [PubMed]
  14. A.D. Yaghjian and S. Maci,"Alternative Derivation of Electromagnetic Cloaks and Concentrators," arXiv:0710.2933.
  15. N. A. Nicorovici, R. C. McPhedran, and G. W. Milton,"Optical and dielectric properties of partially resonant composites," Phys. Rev. B 49, 8479 (1994). [CrossRef]
  16. G.W. Milton, N. A. Nicorovici, R. C. McPhedran and V. A. Podolskiy,"A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance," Proc. R. Soc. London, Ser. A 461, 3999-4034 (2005). [CrossRef]
  17. V. G. Veselago,"The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  18. J. B. Pendry,"Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  19. J. B. Pendry and S. A. Ramakrishna,"Focusing light using negative refraction," J. Phys.: Condens. Matter 15,6345-64 (2003). [CrossRef]
  20. U. Leonhardt and T. G. Philbin,"General relativity in electrical engineering," New J. Phys. 8, 247 (2006). [CrossRef]
  21. G. W. Milton, N. P. Nicorovici, R. C. McPhedran, K. Cherednichenko, and Z. Jacob,"Solutions in folded geometries, and associated cloaking due to anomalous resonance," arXiv:0804.3903.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited