OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 18565–18575

Planar wallpaper group metamaterials for novel terahertz applications

Christopher M. Bingham, Hu Tao, Xianliang Liu, Richard D. Averitt, Xin Zhang, and Willie J. Padilla  »View Author Affiliations

Optics Express, Vol. 16, Issue 23, pp. 18565-18575 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (489 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present novel metamaterial structures based upon various planar wallpaper groups, in both hexagonal and square unit cells. An investigation of metamaterials consisting of one, two, and three unique sub-lattices with resonant frequencies in the terahertz (THz) was performed. We describe the theory, perform simulations, and conduct experiments to characterize these multiple element metamaterials. A method for using these new structures as a means for bio/chemical hazard detection, as well as electromagnetic signature control is proposed.

© 2008 Optical Society of America

OCIS Codes
(040.1880) Detectors : Detection
(070.4790) Fourier optics and signal processing : Spectrum analysis
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: August 21, 2008
Revised Manuscript: October 23, 2008
Manuscript Accepted: October 23, 2008
Published: October 27, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Christopher M. Bingham, Hu Tao, Xianliang Liu, Richard D. Averitt, Xin Zhang, and Willie J. Padilla, "Planar wallpaper group metamaterials for novel terahertz applications," Opt. Express 16, 18565-18575 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-614 (1968). [CrossRef]
  2. D. R. Smith,W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  4. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 (2000). [CrossRef] [PubMed]
  5. A. Grbic and G. V. Elefheriades, "Overcoming the Diffraction Limit with a Planar Left-Handed Transmission-Line Lens," Phys. Rev. Lett 92, 117403 (2004). [CrossRef] [PubMed]
  6. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977-979 (2006). [CrossRef] [PubMed]
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  9. M. C. K. Siltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale, & J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging," Science 291, 849-851 (2001). [CrossRef]
  10. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184 (2000). [CrossRef] [PubMed]
  11. D. Schurig, J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Appl. Phys. Lett. 88, 041109 (2006). [CrossRef]
  12. M. Gokkavas, K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left- handed metamaterial operating at 100 GHz," Phys. Rev. B 73, 193103 (2006). [CrossRef]
  13. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz Magnetic Response from Artificial Materials," Science 303, 1494-1496 (2004). [CrossRef] [PubMed]
  14. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic Response of Metamaterials at 100 Terahertz," Science 306, 1351-1353 (2004). [CrossRef] [PubMed]
  15. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck,"Experimental Demonstration of Near-Infrared Negative-Index Metamaterials," Phys. Rev. Lett. 95, 137404 (2005). [CrossRef] [PubMed]
  16. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, "Negative index metamaterial combining magnetic resonators with metal films," Opt. Express 14, 7872-77 (2006). [CrossRef] [PubMed]
  17. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007). [CrossRef]
  18. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356 (2005) [CrossRef]
  19. D. Schattschneider, "The Plane Symmetry Groups: Their Recognition and Notation," The American Mathematical Monthly, Vol.  85, No. 6, pp. 439-450 (1978) [CrossRef]
  20. T. Driscoll, G. O. Andrew, D. N. Basov, S. Palit, T. Ren, J. Mock, S.-Y. Cho, N. M. Jokerst, and D. R. Smith, "Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy," Appl. Phys. Lett. 90, 092508 (2007). [CrossRef]
  21. [18] being an execption having a hexagonal lattice.
  22. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand,W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, "Dual-band planar electric metamaterial in the terahertz regime," Opt. Express 16, 9746-9752 (2008). [CrossRef] [PubMed]
  23. R. P. Drupp, J. A. Bossard, Y-H. Ye, D. H. Werner, and T. S. Mayer, "Dual-band infrared single-layer metallodielectric photonic crystals," Appl. Phys. Lett. 85, 1835-1837 (2004). [CrossRef]
  24. Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, "Single-layer metallodielectric nanostructures as dualband midinfrared filters," Appl. Phys. Lett. 92, 263106 (2008). [CrossRef]
  25. J. A. Bossard, D. H. Werner, T. S. Mayer, J. A. Smith, Y. U. Tang, R. P. Drupp, and L. Li, "The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications," IEEE T Ant. Prop 54, 1265 (2006). [CrossRef]
  26. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt. "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102R (2007). [CrossRef]
  27. HFSS, Ansoft Corporation, Copyright (2008).
  28. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies," Phys. Rev. Lett. 96, 107401 (2006). [CrossRef] [PubMed]
  29. H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: design, fabrication and characterization," Opt. Express 16, 7181-7188 (2008). [CrossRef] [PubMed]
  30. Brucherseifer, M. , M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051 (2000). [CrossRef]
  31. A. Menikh, S. P. Mickan, H. Liu, R. MacColl, and X.-C. Zhang, "Label-free amplified bioaffinity detection using terahertz wave technology," Biosens. Bioelectron. 20, 658662 (2004). [CrossRef]
  32. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006). [CrossRef] [PubMed]
  33. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006). [CrossRef] [PubMed]
  34. T. M. Korter and D. F. Plusquellic, "Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared," Chem. Phys. Lett. 385, 45-51 (2004). [CrossRef]
  35. D. G. Allis, A. M. Fedor, T. M. Korter, J. E. Bjarnason, and E. R. Brown "Assignment of the lowest-lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory," Chem. Phys. Lett. 440203-209 (2007). [CrossRef]
  36. Z. Jakši?, O. Jakši?, Z. Djuri?, and C. Kment, "A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance," J. Opt. A: Pure Appl. Opt. 9S377-S384 (2007). [CrossRef]
  37. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, "Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations," Opt. Express,  16, 1786-1795 (2008). [CrossRef] [PubMed]
  38. M. Osawa, "Surface Enhanced Infrared Absorption," Topics Appl. Phys. 81163-187 (2001), and references contained therein. [CrossRef]
  39. M. Tabor, Chaos and Integrability in Nonlinear Dynamics: An Introduction (New York: Wiley, 1989) pp. 154-163.
  40. B. V. Chirikov, "A Universal Instability of Many-Dimensional Oscillator Systems," Phys. Rep. 52264-379 (1979). [CrossRef]
  41. S. P. Mickan, A. Menikh, H. Liu, C. A Mannella, R. MacColl, D. Abbott, J. Munch, and X-C Zhang, "Label-free bioaffinity detection using terahertz technology," Phys. Med. Biol. 473789-3795 (2002). [CrossRef] [PubMed]
  42. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008). [CrossRef] [PubMed]
  43. B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, "Infrared frequency selective surface based on circuit-analog square loop design," IEEE T Ant. Prop 53, 745 (2005). [CrossRef]
  44. I. Puscasu and W. L. Schaich, "Narrow-band, tunable infrared emission from arrays of microstrip patches," Appl. Phys. Lett. 92233102 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited