OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 18576–18589

Nanoconcentration of terahertz radiation in plasmonic waveguides

Anastasia Rusina, Maxim Durach, Keith A. Nelson, and Mark I. Stockman  »View Author Affiliations

Optics Express, Vol. 16, Issue 23, pp. 18576-18589 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (497 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We establish the principal limits for the nanoconcentration of the THz radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration. We predict that the adiabatic compression of THz radiation from the initial spot size of R0 ~λ0 to the final size of R=100-250 nm can be achieved, while the THz radiation intensity is increased by a factor of ×10 to ×250. This THz energy nanoconcentration will not only improve the spatial resolution and increase the signal/noise ratio for the THz imaging and spectroscopy, but in combination with the recently developed sources of powerful THz pulses will allow the observation of nonlinear THz effects and a variety of nonlinear spectroscopies (such as two-dimensional spectroscopy), which are highly informative. This will find a wide spectrum of applications in science, engineering, biomedical research, environmental monitoring, and defense.

© 2008 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6690) Optics at surfaces : Surface waves
(250.5403) Optoelectronics : Plasmonics
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Optics at Surfaces

Original Manuscript: September 3, 2008
Revised Manuscript: October 23, 2008
Manuscript Accepted: October 24, 2008
Published: October 27, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Anastasia Rusina, Maxim Durach, Keith A. Nelson, and Mark I. Stockman, "Nanoconcentration of terahertz radiation in plasmonic waveguides," Opt. Express 16, 18576-18589 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, New York, 2006).
  2. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, 137404-1-4 (2004). [CrossRef]
  3. E. Verhagen, L. Kuipers, and A. Polman, "Enhanced nonlinear optical effects with a tapered plasmonic waveguide," Nano Lett. 7, 334-337 (2007). [CrossRef] [PubMed]
  4. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, "Grating-coupling of surface plasmons onto metallic tips: A nano-confined light source," Nano Lett. 7, 2784-2788 (2007). [CrossRef] [PubMed]
  5. E. Verhagen, A. Polman, and L. Kuipers, "Nanofocusing in laterally tapered plasmonic waveguides," Opt. Express 16, 45-57 (2008). [CrossRef] [PubMed]
  6. L. Novotny and S. J. Stranick, "Near-field optical microscopy and spectroscopy with pointed probes," Annu. Rev. Phys. Chem. 57, 303-331 (2006). [CrossRef] [PubMed]
  7. A. Lewis, H. Taha, A. Strinkovski, A. Manevitch, A. Khatchatouriants, R. Dekhter, and E. Ammann, "Nearfield optics: From subwavelength illumination to nanometric shadowing," Nature Biotechnology 21, 1377-1386 (2003). [CrossRef]
  8. J. Seelig, K. Leslie, A. Renn, S. Kuhn, V. Jacobsen, M. van de Corput, C. Wyman, and V. Sandoghdar, "Nanoparticle-induced fluorescence lifetime modification as nanoscopic ruler: Demonstration at the single molecule level," Nano Lett. 7, 685-689 (2007). [CrossRef] [PubMed]
  9. F. D. Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. D. Fabrizio, "A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules," Nano Lett. 8, 2321-2327 (2008). [CrossRef] [PubMed]
  10. W. L. Chan, J. Deibel, and D. M. Mittleman, "Imaging with terahertz radiation," Rep. Prog. Phys. 70, 1325-1379 (2007). [CrossRef]
  11. H. T. Chen, R. Kersting, and G. C. Cho, "Terahertz imaging with nanometer resolution," Appl. Phys. Lett. 83, 3009-3011 (2003). [CrossRef]
  12. N. Klein, P. Lahl, U. Poppe, F. Kadlec, and P. Kuzel, "A netal-dielectric antenna for terahertz near-field imaging," J. Appl. Phys. 98, 014910-1-5 (2005). [CrossRef]
  13. F. Keilmann, "Scanning tip for optical radiation," in U. S. Patent 4,994,818, pp. 1-7 (Max Plank Geselschaft, Germany, USA, 1991).
  14. R. Lecaque, S. Gresillon, and C. Boccara, "THz emission microscopy with sub-wavelength broadband source," Opt. Express 16, 4731-4738 (2008). [CrossRef] [PubMed]
  15. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, J. R.W. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983). [CrossRef] [PubMed]
  16. A. Sommerfeld, "Ueber die Fortpflanzung elektrodynamischer Wellen laengs eines Drahtes," Ann. Phys. Chem. 67, 233 - 290 (1899). [CrossRef]
  17. J. Zenneck, "Fortplfanzung ebener elektromagnetischer Wellen laengs einer ebenen Leiterflaeche," Ann. Phys. 23, 846-866 (1907). [CrossRef]
  18. J. Saxler, J. Gómez Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, "Time-domain measurements of surface plasmon polaritons in the terahertz frequency range," Phys. Rev. B 69, 155427-1-4 (2004). [CrossRef]
  19. D. L. Mills and A. A. Maradudin, "Surface corrugation and surface-polariton binding in the infrared frequency range," Phys. Rev. B 39, 1569-1574 (1989). [CrossRef]
  20. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004). [CrossRef] [PubMed]
  21. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," J. Opt. A 7, S97-S101 (2005). [CrossRef]
  22. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires," Phys. Rev. Lett. 97, 176805-1-4 (2006). [CrossRef]
  23. F. Keilmann, "FIR microscopy," Infrared Physics and Technology 36, 217-224 (1995). [CrossRef]
  24. A. Kramer, F. Keilmann, B. Knoll, and R. Guckenberger, "The coaxial tip as a nano-antenna for scanning nearfield microwave transmission microscopy," Micron 27, 413-417 (1996). [CrossRef]
  25. F. Keilmann, D.W. van derWeide, T. Eickelkamp, R. Merz, and D. Stockle, "Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope," Opt. Commun. 129, 15-18 (1996). [CrossRef]
  26. J. Hebling, K. L. Yeh, M. C. Hoffmann, and K. A. Nelson, "High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy," IEEE J. Sel. Top. Quantum Electron. 14, 345-353 (2008). [CrossRef]
  27. Y. Shen, T. Watanabe, D. A. Arena, C. C. Kao, J. B. Murphy, T. Y. Tsang, X. J. Wang, and G. L. Carr, "Nonlinear cross-phase modulation with intense single-cycle terahertz pulses," Phys. Rev. Lett. 99, 043901-1-4 (2007). [CrossRef]
  28. S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, "A single-photon detector in the far-infrared range," Nature 403, 405-407 (2000). [CrossRef] [PubMed]
  29. B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nature Materials 1, 26-33 (2002). [CrossRef]
  30. M. Tonouchi, "Cutting-edge terahertz technology," Nature Photonics 1, 97-105 (2007). [CrossRef]
  31. D. Dragoman and M. Dragoman, "Terahertz fields and applications," Prog. Quantum Electron. 28, 1-66 (2004). [CrossRef]
  32. K. V. Nerkararyan, A. A. Hakhoumian, and A. E. Babayan, "Terahertz surface plasmon-polariton superfocusing in coaxial cone semiconductor structures," Plasmonics 3, 27-31 (2008). [CrossRef]
  33. F. Keilmann, "Status of THz-to-visible nanospectroscopy development," J. Biol. Phys. 29, 195-199 (2003). [CrossRef]
  34. R. Merlin, "Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing," Science 317, 927-929 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited