OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 18599–18604

Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity

Kaiqun Lin, Yonghua Lu, Junxue Chen, Rongsheng Zheng, Pei Wang, and Hai Ming  »View Author Affiliations


Optics Express, Vol. 16, Issue 23, pp. 18599-18604 (2008)
http://dx.doi.org/10.1364/OE.16.018599


View Full Text Article

Enhanced HTML    Acrobat PDF (126 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High sensitivity is obtained at larger resonant incident angle if negative diffraction order of metallic grating is used to excite the surface plasmon. A highly sensitive grating-based surface plasmon resonance (SPR) sensor is designed for the hydrogen detection. A thin palladium (Pd) film deposited on the grating surface is used as transducer. The influences of grating period and the thickness of Pd on the performance of sensor are investigated using rigorous coupled-wave analysis (RCWA) method. The sensitivity as well as the width of the SPR curves and reflective amplitude is considered simultaneously for designing the grating-based SPR hydrogen sensor, and a set of optimized structural parameters is presented. The performance of grating-based SPR sensor is also compared with that of conventional prism-based SPR sensor.

© 2008 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Diffraction and Gratings

History
Original Manuscript: September 19, 2008
Revised Manuscript: October 17, 2008
Manuscript Accepted: October 17, 2008
Published: October 27, 2008

Citation
Kaiqun Lin, Yonghua Lu, Junxue Chen, Rongsheng Zheng, Pei Wang, and Hai Ming, "Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity," Opt. Express 16, 18599-18604 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18599


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Butler, "Optical fiber hydrogen sensor," Appl. Phys. Lett. 45,1007-1009 (1984). [CrossRef]
  2. P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, "An integrated optic hydrogen sensor based on SPR on palladium," Sens. Actuators B 74,168-172 (2001). [CrossRef]
  3. X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, and M. Clement, "Surface plasmon resonance hydrogen sensor using an optical fibre," Meas. Sci. Technol. 13,118-124 (2002). [CrossRef]
  4. D. Monzón-Hernández, D. Luna-Moreno, J. Villatoro, and G. Badenes, "All-optical fiber hydrogen sensor based annealed Pd-Au sensing nanolayers," Proc. SPIE 6619, 66191F1-4 (2007).
  5. C. Nylander, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmons resonance," Sens. Actuators 3,79-88 (1982). [CrossRef]
  6. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54,3-15 (1999). [CrossRef]
  7. K. Mitsui, Y. Handa, and K. Kajikawa, "Optical fiber affinity biosensor based on localized surface plasmon resonance," Appl. Phys. Lett. 85,4231-4233 (2004). [CrossRef]
  8. Y. C. Kim, W. Peng, S. Banerji, and K. S. Booksh, "Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases," Opt. Lett. 30,2218-2220 (2005). [CrossRef] [PubMed]
  9. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, "Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms," Nano Lett. 6,2060-2065 (2006). [CrossRef] [PubMed]
  10. H. Y. Lin, W. H. Tsai, Y. C. Tsao, and B. C. Sheu, "Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light," Appl. Opt. 46,800-806 (2007). [CrossRef] [PubMed]
  11. D. C. Cullen, R. G. Brown, and C. R. Lowe, "Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings," Biosensors 3,211-225 (1987). [CrossRef] [PubMed]
  12. M. J. Jory, P. S. Vukusic, and J. R. Sambles, "Development of a prototype gas sensor using surface plasmon resonance on gratings," Sens. Actuators B 17,203-209 (1994). [CrossRef]
  13. C. R. Lawrence, N. J. Geddes, D. N. Furlong, and J. R. Sambles, "Surface plasmon resonance studies of immunoreactions utilizing disposable diffraction gratings," Biosens. Bioelectron. 11,389-400 (1996). [CrossRef] [PubMed]
  14. D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89,407-411(2007). [CrossRef]
  15. K. H. Yoon and M. L. Shuler, "Design optimization of nano-grating surface plasmon resonance sensors," Opt. Express 14,4842-4849(2006). [CrossRef] [PubMed]
  16. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22,1099-1119 (1983). [CrossRef] [PubMed]
  17. P. B. Johnson and R. W. Christy, "Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd," Phys. Rev. B 9,5056-5070 (1974). [CrossRef]
  18. D. R. Shankaran, K. V. Gobi, T. Sakai, K. Matsumoto, K. Toko, and N. Miura, "Surface plasmon resonance immunosensor for highly sensitive detection of 2, 4, 6-trinitrotoluene," Biosens. Bioelectron. 20,1750-1756 (2005). [CrossRef] [PubMed]
  19. B. Chadwick, J. Tann, M. Brungs, and M. Gal, "A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy," Sens. Actuators B 17,215-220 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited