OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 18646–18656

Growth parameter optimization for fast quantum dot SESAMs

D. J. H. C. Maas, A.-R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller  »View Author Affiliations


Optics Express, Vol. 16, Issue 23, pp. 18646-18656 (2008)
http://dx.doi.org/10.1364/OE.16.018646


View Full Text Article

Enhanced HTML    Acrobat PDF (393 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Semiconductor saturable absorber mirrors (SESAMs) using quantum dot (QD) absorbers exhibit a larger design freedom than standard quantum well absorbers. The additional parameter of the dot density in combination with the field enhancement allows for an independent control of saturation fluence and modulation depth. We present the first detailed study of the effect of QD growth parameters and post growth annealing on the macroscopic optical SESAM parameters, measuring both nonlinear reflectivity and recombination dynamics. We studied a set of self-assembled InAs QD-SESAMs optimized for an operation wavelength around 960 nm with varying dot density and growth temperature. We confirm that the modulation depth is controlled by the dot density. We present design guidelines for QD-SESAMs with low saturation fluence and fast recovery, which are for example important for modelocking of vertical external cavity surface emitting lasers (VECSELs).

© 2008 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 15, 2008
Revised Manuscript: October 20, 2008
Manuscript Accepted: October 26, 2008
Published: October 28, 2008

Citation
D. J. H. C. Maas, A. R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, "Growth parameter optimization for fast quantum dot SESAMs," Opt. Express 16, 18646-18656 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18646


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, "Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers," IEEE J. Sel. Top. Quantum Electron. 2, 435-453 (1996). [CrossRef]
  2. U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003). [CrossRef] [PubMed]
  3. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46-56 (1999). [CrossRef]
  4. U. Keller, "Ultrafast solid-state lasers," in Landolt-Börnstein. Laser Physics and Applications. Subvolume B: Laser Systems. Part I., G. Herziger, H. Weber, and R. Proprawe, eds., (Springer Verlag, Heidelberg, 2007), pp. 33-167.
  5. O. Qasaimeh, W. D. Zhou, J. Phillips, S. Krishna, P. Bhattacharya, and M. Dutta, "Bistability and self-pulsation in quantum-dot lasers with intracavity quantum-dot saturable absorbers," Appl. Phys. Lett. 74, 1654-1656 (1999). [CrossRef]
  6. A. Garnache, S. Hoogland, A. C. Tropper, J. M. Gerard, V. Thierry-Mieg, and J. S. Roberts, "Pico-second passively mode locked surface-emitting laser with self-assembled semiconductor quantum dot absorber," CLEO/Europe-EQEC, postdeadline paper (2001).
  7. E. U. Rafailov, S. J. White, A. A. Lagatsky, A. Miller, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, "Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers," IEEE Photon. Technol. Lett. 16, 2439-2441 (2004). [CrossRef]
  8. A. A. Lagatsky, F. M. Bain, C. T. A. Brown, W. Sibbett, D. A. Livshits, G. Erbert, and E. U. Rafailov, "Low-loss quantum-dot-based saturable absorber for efficient femtosecond pulse generation," Appl. Phys. Lett. 91, 231111 (2007). [CrossRef]
  9. D. Lorenser, H. J. Unold, D. J. H. C. Maas, A. Aschwanden, R. Grange, R. Paschotta, D. Ebling, E. Gini, and U. Keller, "Towards Wafer-Scale Integration of High Repetition Rate Passively Mode-Locked Surface-Emitting Semiconductor Lasers," Appl. Phys. B 79, 927-932 (2004). [CrossRef]
  10. G. J. Spühler, K. J. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schon, and U. Keller, "Semiconductor saturable absorber mirror structures with low saturation fluence," Appl. Phys. B 81, 27-32 (2005). [CrossRef]
  11. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, "High-Power (>0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams," IEEE Photon. Technol. Lett. 9, 1063-1065 (1997). [CrossRef]
  12. A. Aschwanden, D. Lorenser, H. J. Unold, R. Paschotta, E. Gini, and U. Keller, "2.1-W picosecond passively mode-locked external-cavity semiconductor laser," Opt. Lett. 30, 272-274 (2005). [CrossRef] [PubMed]
  13. D. Lorenser, D. J. H. C. Maas, H. J. Unold, A.-R. Bellancourt, B. Rudin, E. Gini, D. Ebling, and U. Keller, "50-GHz passively mode-locked surface-emitting semiconductor laser with 100 mW average output power," IEEE J. Quantum Electron. 42, 838-847 (2006). [CrossRef]
  14. U. Keller, and A. C. Tropper, "Passively modelocked surface-emitting semiconductor lasers," Phys. Rep. 429, 67-120 (2006). [CrossRef]
  15. D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, and U. Keller, "Vertical integration of ultrafast semiconductor lasers," Appl. Phys. B 88, 493-497 (2007). [CrossRef]
  16. T. R. Schibli, E. R. Thoen, F. X. Kärtner, and E. P. Ippen, "Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption," Appl. Phys. B 70, S41-S49 (2000). [CrossRef]
  17. R. Grange, M. Haiml, R. Paschotta, G. J. Spuhler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, "New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers," Appl. Phys. B 80, 151-158 (2005). [CrossRef]
  18. D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, "High precision optical characterization of semiconductor saturable absorber mirrors," Opt. Express 16, 7571-7579 (2008). [CrossRef] [PubMed]
  19. G. S. Solomon, J. A. Trezza, and J. J. S. Harris, "Effects of monolayer coverage, flux ratio, and growth rate on the island density of InAs islands on GaAs," Appl. Phys. Lett. 66, 3161-3163 (1995). [CrossRef]
  20. Y. Masumoto and T. Takagahara, eds., Semiconductor Quantum Dots: Physics, Spectroscopy and Applications (Springer-Verlag, Berlin, 2002).
  21. M. A. Cusack, P. R. Briddon, and M. Jaros, "Absorption spectra and optical transitions in InAs/GaAs self-assembled quantum dots," Phys. Rev. B 56, 4047 (1997). [CrossRef]
  22. R. Paschotta, R. Häring, U. Keller, A. Garnache, S. Hoogland, and A. C. Tropper, "Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers," Appl. Phys. B 75, 445-451 (2002). [CrossRef]
  23. M. Haiml, U. Siegner, F. Morier-Genoud, U. Keller, M. Luysberg, R. C. Lutz, P. Specht, and E. R. Weber, "Optical nonlinearity in low-temperature-grown GaAs: Microscopic limitations and optimization strategies," Appl. Phys. Lett. 74, 3134-3136 (1999). [CrossRef]
  24. U. Siegner, R. Fluck, G. Zhang, and U. Keller, "Ultrafast high-intensity nonlinear absorption dynamics in low-temperature grown gallium arsenide," Appl. Phys. Lett. 69, 2566-2568 (1996). [CrossRef]
  25. M. Paillard, X. Marie, E. Vanelle, T. Amand, V. K. Kalevich, A. R. Kovsh, A. E. Zhukov, and V. M. Ustinov, "Time-resolved photoluminescence in self-assembled InAs/GaAs quantum dots under strictly resonant excitation," Appl. Phys. Lett. 76, 76-78 (2000). [CrossRef]
  26. P. C. Sercel, "Multiphonon-assisted tunneling through deep levels: A rapid energy-relaxation mechanism in nonideal quantum-dot heterostructures," Phys. Rev. B 51, 14532 (1995). [CrossRef]
  27. Y. I. Mazur, Z. M. Wang, G. G. Tarasov, M. Xiao, G. J. Salamo, J. W. Tomm, V. Talalaev, and H. Kissel, "Interdot carrier transfer in asymmetric bilayer InAs/GaAs quantum dot structures," Appl. Phys. Lett. 86, 063102-063103 (2005). [CrossRef]
  28. H. Benisty, C. M. Sotomayor-Torres, and C. Weisbuch, "Intrinsic mechanism for the poor luminescence properties of quantum box systems," Phys. Rev. B 44, 10945-10948 (1991). [CrossRef]
  29. T. W. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, "Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices," IEEE Photon. Technol. Lett. 13, 541-543 (2001). [CrossRef]
  30. F. Quochi, M. Dinu, N. H. Bonadeo, J. Shah, L. N. Pfeiffer, K. W. West, and P. M. Platzman, "Ultrafast carrier dynamics of resonantly excited 1.3-?m InAs/GaAs self-assembled quantum dots," Physica B 314, 263-267 (2002). [CrossRef]
  31. B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, "Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots," Phys. Rev. B 54, 11532 (1996). [CrossRef]
  32. E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kärtner, E. P. Ippen, and L. A. Kolodziejski, "Two-photon absorption in semiconductor saturable absorber mirrors," Appl. Phys. Lett. 74, 3927-3929 (1999). [CrossRef]
  33. S. Malik, C. Roberts, R. Murray, and M. Pate, "Tuning self-assembled InAs quantum dots by rapid thermal annealing," Appl. Phys. Lett. 71, 1987-1989 (1997). [CrossRef]
  34. R. Grange, A. Rutz, V. Liverini, M. Haiml, S. Schön, and U. Keller, "Nonlinear absorption edge properties of 1.3 µm GaInNAs saturable absorbers," Appl. Phys. Lett 87, 132103 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited