OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 18657–18666

On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning

Masaya Notomi and Hideaki Taniyama  »View Author Affiliations


Optics Express, Vol. 16, Issue 23, pp. 18657-18666 (2008)
http://dx.doi.org/10.1364/OE.16.018657


View Full Text Article

Enhanced HTML    Acrobat PDF (1249 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that ultrahigh-Q wavelength-sized cavities can be reconfigurably formed by local refractive index tuning of photonic-crystal mode-gap waveguides. We have found that Q can be extraordinarily high (~5×109), which is much higher than that of structure-modulated mode-gap cavities. Furthermore, the required index modulation is extremely small (Δn/n~10-3), which enables dynamic cavity formation by fast optical nonlinearity. We numerically show that traveling photons in a waveguide can be pinned by fast local index tuning.

© 2008 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: September 2, 2008
Revised Manuscript: October 2, 2008
Manuscript Accepted: October 22, 2008
Published: October 28, 2008

Citation
Masaya Notomi and Hideaki Taniyama, "On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning," Opt. Express 16, 18657-18666 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18657


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  2. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003). [CrossRef] [PubMed]
  3. B-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005). [CrossRef]
  4. E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  5. R. Herrmann, T. Sunner, T. Hein, A. Loffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs," Opt. Lett. 31, 1229-1231 (2006). [CrossRef] [PubMed]
  6. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photon. 1, 49-52 (2007). [CrossRef]
  7. Y. Takahashi, H. Hagino, Y. Tanaka, B-S. Song, T. Asano, and S. Noda, "High-Q nanocavity with a 2-ns photon lifetime," Opt. Express 15, 17206 (2007). [CrossRef] [PubMed]
  8. T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007). [CrossRef]
  9. P. Velha, E. Picard, T. Charvolin, E. Hadji, J. C. Rodier, P. Lalanne, and D. Peyrade, "Ultra-High Q/V Fabry-Perot microcavity on SOI substrate," Opt. Express 15, 16090 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-24-16090. [CrossRef] [PubMed]
  10. M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Opt. Express 16, 11095-11102 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-15-11095. [CrossRef] [PubMed]
  11. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007). [CrossRef] [PubMed]
  12. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  13. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Materials 3, 211-219 (2004). [CrossRef] [PubMed]
  14. H-Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004). [CrossRef]
  15. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7506. [CrossRef] [PubMed]
  16. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities, Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678. [CrossRef] [PubMed]
  17. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip, " Opt. Lett. 30, 2575-2577 (2005). [CrossRef] [PubMed]
  18. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, "Nonlinear and adiabatic control of high-Q photonic crystal nanocavities," Opt. Express 15, 17458-17481 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-17458. [CrossRef] [PubMed]
  19. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  20. K. Inoshita and T. Baba, "Lasing at bend, branch and intersection of photonic crystal waveguides," Electron. Lett. 39, 844 (2003). [CrossRef]
  21. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1551. [CrossRef] [PubMed]
  22. T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express 15, 7826-7839 (2007). [CrossRef] [PubMed]
  23. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, "Dynamic release of short pulse from ultrahigh-Q nanocavities via adiabatic wavelength conversion", CLEO/QELS 2008, QPDB1, San Diego, USA.
  24. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007). [CrossRef] [PubMed]
  25. Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocavity with Q-factor of similar to 109," J. Lightwave Technol. 26, 1532-1539 (2008). [CrossRef]
  26. M. F. Yanik and S. H. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004). [CrossRef] [PubMed]
  27. M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803 (R) (2006). [CrossRef]
  28. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006). [CrossRef] [PubMed]
  29. Q. F. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nat. Physics 3, 406-410 (2007). [CrossRef]
  30. K. Yamada, H. Morita, A. Shinya, and M. Notomi, "Improved line-defect structures for photonic-crystal waveguides with high group velocity," Opt. Commun. 198, 395-402 (2001). [CrossRef]
  31. S. Kwon, T. Sünner, M. Kamp, and A. Forchel, "Optimization of photonic crystal cavity for chemical sensing," Opt. Express 16, 11709-11717 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited