OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 18764–18769

Focal modulation microscopy

Nanguang Chen, Chee-Howe Wong, and Colin J. R. Sheppard  »View Author Affiliations


Optics Express, Vol. 16, Issue 23, pp. 18764-18769 (2008)
http://dx.doi.org/10.1364/OE.16.018764


View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a novel light microscopy method for high resolution molecular imaging of thick biological tissues with one photon excited fluorescence. Effective optical sectioning and diffraction limited spatial resolution are achieved when imaging deep inside a multiple-scattering medium by the use of focal modulation, a technique for suppressing the background fluorescence signal excited by scattered light. Our method has been validated with animal tissue and an imaging depth around 600 microns has been demonstrated.

© 2008 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(180.2520) Microscopy : Fluorescence microscopy
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Microscopy

History
Original Manuscript: September 22, 2008
Revised Manuscript: October 19, 2008
Manuscript Accepted: October 19, 2008
Published: October 29, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Nanguang Chen, Chee-Howe Wong, and Colin J. Sheppard, "Focal modulation microscopy," Opt. Express 16, 18764-18769 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18764


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Yang, P. Jiang, and R. M. Hoffman, "Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time," Cancer Res 67, 5195-5200 (2007). [CrossRef] [PubMed]
  2. R. K. Jain, L. L. Munn, and D. Fukumura, "Dissecting tumor pathophysiology using intravital microscopy," Nat. Rev. Cancer 2, 266-276 (2002). [CrossRef] [PubMed]
  3. M. J. Levene, D. A. Dombeck, K. A. Kasischeke, R. P. Molley, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol 91, 1908-1912 (2004). [CrossRef]
  4. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  5. M. Minsky, Microscopy Apparatus. U. S. Patent No. 3,013,467 (1957).
  6. C. J. R. Sheppard and A. Choudhury, "Image formation in the scanning microscope," Optica Acta 24, 1051-1073 (1977). [CrossRef]
  7. M. Gu, T. Tannous, and C. J. R. Sheppard, "Effect of numerical aperture and annular pupil on confocal imaging through highly-scattering media," Opt. Lett. 21, 312-314 (1996). [CrossRef] [PubMed]
  8. C. J. R. Sheppard and R. Kompfner, "Resonant scanning optical microscope," Appl. Opt. 17, 2879-2882 (1978). [CrossRef] [PubMed]
  9. X. Deng and M. Gu, "Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation," Appl. Opt. 42, 3321-3329 (2003). [CrossRef] [PubMed]
  10. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  11. M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, and S. Charpak, "Two photon microscopy in brain tissue: parameters influencing the imaging depth," J. Neurosci. Meth. 111, 29-37 (2001). [CrossRef]
  12. P. Theer, M. T. Hasan, and W. Denk, "Two-Photon imaging to a depth of 1000 ?m in living brains by use of a Ti:Al2O3 regenerative amplifier," Opt. Lett. 28, 1022-1024 (2003). [CrossRef] [PubMed]
  13. A. Leray, K. Lillis, and J. Mertz, "Enhanced Background Rejection in Thick Tissue with Differential-Aberration Two-Photon Microscopy," Biophys. J 94, 1449-1458 (2008). [CrossRef]
  14. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, Y. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  15. J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003). [CrossRef] [PubMed]
  16. S. R. Chin, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997). [CrossRef]
  17. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  18. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography of the human retina," Arch. Ophthalmol.-CHIC 113, 325-332 (1995). [CrossRef]
  19. W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, H. Sattmann, and A. F. Fercher, "Submicrometer precision biometry of the anterior segment of the human eye," Invest. Ophthalmol. Visual Sci. 38, 1304-1313 (1997).
  20. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southen, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997). [CrossRef] [PubMed]
  21. X. D. Li, S. A. Boppart, J. van Dam, H. Mashimo, M. Mutinga, W. Drexler, M. Klein, C. Pitrix, M. L. Krinsky, M. E. Brezinski, and J. G. Fujimoto, "Optical coherence tomography: Advanced technology for the endoscopic imaging of Barrett’s esophagus," Endoscopy 32, 921-930 (2000). [CrossRef]
  22. H. Zhang, K. Maslov, G. Stoica, and L. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006). [CrossRef] [PubMed]
  23. V. Ntziachristos, C. Bremer, and R. Weissleder, "Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging," Eur. Radiol. 13195-208 (2003). [PubMed]
  24. Q. Zhu, N. Chen, and S. H. Kurtzman, "Imaging tumor angiogenesis by use of combined near-infrared diffusive light and ultrasound," Opt. Lett. 28, 337-339 (2003). [CrossRef] [PubMed]
  25. D. Oron and Y. Silberberg, "Spatiotemporal coherent control using shaped, temporally focused pulses," Opt. Express 13, 9903-9908 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited