OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 18790–18979

Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields  »View Author Affiliations

Optics Express, Vol. 16, Issue 23, pp. 18790-18979 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the first gigahertz clocked decoy-protocol quantum key distribution (QKD). Record key rates have been achieved thanks to the use of self-differencing InGaAs avalanche photodiodes designed specifically for high speed single photon detection. The system is characterized with a secure key rate of 1.02 Mbit/s for a fiber distance of 20 km and 10.1 kbit/s for 100 km. As the present advance relies upon compact non-cryogenic detectors, it opens the door towards practical and low cost QKD systems to secure broadband communication in future.

© 2008 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(040.1345) Detectors : Avalanche photodiodes (APDs)

ToC Category:
Quantum Optics

Original Manuscript: August 27, 2008
Revised Manuscript: October 1, 2008
Manuscript Accepted: October 28, 2008
Published: October 30, 2008

A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate," Opt. Express 16, 18790-18979 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, pp. 175-179.
  2. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, "Experimental quantum cryptography," J. Cryptol. 5, 3-28 (1992). [CrossRef]
  3. P. Townsend, J. G. Rarity and P. R. Tapster, "Single-photon interference in 10 km long optical fiber interferometer," Electron. Lett. 29, 634-639 (1993). [CrossRef]
  4. N. Gisin, G. Ribordy,W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  5. D. Gottesman, H. K. Lo, N. Lütkenhaus and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum. Inf. Comput. 4, 325-360 (2004).
  6. W. Stallings, Cryptography and network security, 3rd ed. (Prentice and Hall, New Jersey, 2003).
  7. C. Gobby, Z. L. Yuan and A. J. Shields, "Quantum key distribution over 122 km telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2002). [CrossRef]
  8. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007). [CrossRef]
  9. K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova and P. D. Townsend, "Quantum key distribution system clocked at 2 GHz," Opt. Express 13, 3015-3020 (2005). [CrossRef] [PubMed]
  10. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe and A. J. Shields, "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett. 92, 201104 (2008). [CrossRef]
  11. European Integrated Project SECOQC, http://www.secoqc.net.
  12. M. Dusek, O. Haderka and M. Hendrych,"Generalized beam-splitting attack in quantum cryptography with dim coherent states," Opt. Commun. 169, 103-108 (1999). [CrossRef]
  13. G. Brassard, N. Lütkenhaus, T. Mor and B. C. Sanders, "Limitations on practical quantum cryptography," Phys. Rev. Lett. 85, 1330-1333 (2000). [CrossRef] [PubMed]
  14. H. K. Lo, X. Ma and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005). [CrossRef] [PubMed]
  15. X. Ma, B. Qi, Y. Zhao and H. K. Lo, "Practical decoy state for quantum key distribution," Phys. Rev. A 72, 012326 (2005). [CrossRef]
  16. X. B. Wang, "Beating the photon-number-splitting attack in practical quantum cryptography," Phys. Rev. Lett. 94, 230503 (2005). [CrossRef] [PubMed]
  17. X. B. Wang, "Decoy-state protocol for quantum cryptography with four different intensities of coherent light," Phys. Rev. A 72, 012322 (2005). [CrossRef]
  18. W. Y. Hwang, "Quantum key distribution with high loss: towards global secure communication," Phys. Rev. Lett. 91, 057901 (2003). [CrossRef] [PubMed]
  19. D. Stucki, N. Brunner, N. Gisin, V. Scarani and H. Zbinden, "Fast and simple one-way quantum key distribution," Appl. Phys. Lett. 87, 194108 (2005). [CrossRef]
  20. K. Inoue, E. Waks and Y. Yamamoto, "Differential phase shift quantum key distribution," Phys. Rev. Lett. 89, 037902 (2002). [CrossRef] [PubMed]
  21. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus and M. Peev, "A framework for practical quantum cryptography," arXiv: 0802.4155v1 (2008).
  22. Z. L. Yuan, A. W. Sharpe and A. J. Shields, "Unconditionally secure quantum key distribution using decoy pulses," Appl. Phys. Lett. 90, 011118 (2007). [CrossRef]
  23. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-distance decoy-state quantum key distribution in optical fiber," Phys. Rev. Lett. 98, 010503 (2007). [CrossRef] [PubMed]
  24. C. Z. Peng, J. Zhang, D. Yang, W.-B. Gao, H.-X. Ma, H. Yin, H. P. Zeng, T. Yang, X.-B. Wang and J. W. Pan, "Experimental long-distance decoy-state quantum key distribution based on polarisation encoding," Phys. Rev. Lett. 98, 010505 (2007). [CrossRef] [PubMed]
  25. J. F. Dynes, Z. L. Yuan, A. W. Sharpe and A. J. Shields, "Practical quantum key distribution over 60 hours at an optical fiber distance of 20 km using weak and vacuum decoy pulses for enhanced security," Opt. Express 15, 8465 - 8471 (2007). [CrossRef] [PubMed]
  26. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe and A. J. Shields, "High speed single photon detection in the near infrared," Appl. Phys. Lett. 91, 041114 (2007). [CrossRef]
  27. Z. L. Yuan and A. J. Shields, "Continuous operation of a one-way quantum key distribution system over installed telecom fibre," Opt. Express 13, 660-665 (2005). [CrossRef] [PubMed]
  28. A. Mink, X. Tang, L. J. Ma, T. Nakassis, B. Hershman, J. C. Bienfang, D. Su, R. Boisvert, C. W. Clark and C. J. Williams, "High speed quantum key distribution system supports one-time pad encryption of real-time video," Proc. SPIE 6244, 62440M (2006). [CrossRef]
  29. Our time-tagging electronics record each photon with a 32-bit number to represent its arrival time. Due to restriction in the data bandwidth at around 160 Mbit/s per channel, for transferring photon information into computer memory, each channel can cope with only 5 million photons per second at most.
  30. J. F. Dynes, Z. L. Yuan, A. W. Sharpe and A. J. Shields, "A high speed, post-processing free, quantum random number generator," Appl. Phys. Lett. 93, 031109 (2008). [CrossRef]
  31. A. Tanaka, M. Fujiwara, S.W. Nam, Y. Nambu, S. Takahashi, W. Maeda, K. Yoshino, S. Miki, B. Baek, Z. Wang, A. Tajima, M. Sasaki and A. Tomita, "Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization," Opt. Express 16, 11354-11360 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited