OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 18813–18826

Optical gap formation and localization properties of optical modes in deterministic aperiodic photonic structures

Svetlana V. Boriskina, Ashwin Gopinath, and Luca Dal Negro  »View Author Affiliations

Optics Express, Vol. 16, Issue 23, pp. 18813-18826 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1588 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate the spectral and localization properties of two-dimensional (2D) deterministic aperiodic (DA) arrays of photonic nanopillars characterized by singular continuous (Thue-Morse sequence) and absolutely continuous (Rudin-Shapiro sequence) Fourier spectra. A rigorous and efficient numerical technique based on the 2D Generalized Multiparticle Mie Theory is used to study the formation of optical gaps and the confinement properties of eigenmodes supported by DA photonic lattices. In particular, we demonstrate the coexistence of optical modes with various degrees of localization (localized, extended and critical) and show that in-plane and out-of-plane optical energy confinement of extended critical modes can be optimally balanced. These results make aperiodic photonic structures very attractive for the engineering of novel passive and active photonic devices, such as low-threshold microlasers, sensitive detectors and bio-chemical sensors.

© 2008 Optical Society of America

OCIS Codes
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(260.5740) Physical optics : Resonance
(290.4210) Scattering : Multiple scattering
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: September 11, 2008
Revised Manuscript: October 17, 2008
Manuscript Accepted: October 17, 2008
Published: October 30, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Svetlana V. Boriskina, Ashwin Gopinath, and Luca Dal Negro, "Optical gap formation and localization properties of optical modes in deterministic aperiodic photonic structures," Opt. Express 16, 18813-18826 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Rockstuhl, U. Peschel, and F. Lederer, "Correlation between single-cylinder properties and bandgap formation in photonic structures," Opt. Lett. 31, 1741-1743 (2006). [CrossRef] [PubMed]
  2. K. Mnaymneh and R. C. Gauthier, "Mode localization and band-gap formation in defect-free photonic quasicrystals," Opt. Express,  15, 5089-5099 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5089. [CrossRef]
  3. A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, "Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice," Phys. Rev. Lett. 94, 183903 (2005). [CrossRef] [PubMed]
  4. Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, "Localized modes in defect-free dodecagonal quasiperiodic photonic crystals," Phys. Rev. B 68, 165106 (2003). [CrossRef]
  5. Z. Feng, X. Zhang, Y. Wang, Z.-Y. Li, B. Cheng, and D.-Z. Zhang, "Negative refraction and imaging using 12-fold-symmetry quasicrystals," Phys. Rev. Lett. 94, 247402 (2005). [CrossRef]
  6. E. Di Gennaro, C. Miletto, S. Savo, A. Andreone, D. Morello, V. Galdi, G. Castaldi, and V. Pierro, "Evidence of local effects in anomalous refraction and focusing properties of dodecagonal photonic quasicrystals," Phys. Rev. B 77, 193104 (2008). [CrossRef]
  7. X. Xu, H. Chen, and D. Zhang, "Enhancement of stimulated emission in 12-fold symmetric quasi-crystals," Appl. Phys. B 89, 29-34 (2007). [CrossRef]
  8. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004). [CrossRef] [PubMed]
  9. E. Macia, "The role of aperiodic order in science and technology," Rep. Prog. Phys. 69, 397-441 (2006). [CrossRef]
  10. L. Dal Negro, N.-N. Feng, and A. Gopinath, "Electromagnetic coupling and plasmon localization in deterministic aperiodic arrays," J. Opt. A: Pure Appl. Opt. 10064013 (2008). [CrossRef]
  11. M. Dulea, M. Johansson, and R. Riklund, "Localization of electrons and electromagnetic waves in a deterministic aperiodic system," Phys. Rev. B 45, 105-114 (1992). [CrossRef]
  12. W. Gellermann, M. Kohmoto, B. Southerland, and P. C. Taylor, "Localization of light waves in Fibonacci dielectric multilayers," Phys. Rev. Lett. 72, 633 (1993). [CrossRef]
  13. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of Fibonacci quasicrystals," Phys. Rev. Lett. 90, 055501 (2003). [CrossRef] [PubMed]
  14. L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc, and J. Haavisto, "Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals," Appl. Phys. Lett. 84, 5186-5188 (2004). [CrossRef]
  15. L. Dal Negro, J. H. Yi, Y. Yi, V. Nguyen, J. Michel, and L. C. Kimerling, "Spectrally enhanced light emission from aperiodic photonic structures," Appl. Phys. Lett.,  86, 261905, 2005 [CrossRef]
  16. S. Chakraborty, M. C. Parker, and R. J. Mears, "A Fourier (k-) space design approach for controllable photonic band and localization states in aperiodic lattices," Photon. Nanostruct. Fundam. Appl. 3, 139-147 (2005). [CrossRef]
  17. A. Gopinath, S. V. Boriskina, N.-N. Feng, B. M. Reinhard, and L. Dal Negro, "Photonic-plasmonic scattering resonances in determinsitic aperiodic structures," Nano Lett. 8, 2423-2431 (2008). [CrossRef] [PubMed]
  18. L. Moretti and V. Mocella, "Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence," Opt. Express,  15, 15314-15323 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15314. [CrossRef]
  19. S. V. Boriskina, A. Gopinath, and L. Dal Negro, "Optical gaps, mode patterns and dipole radiation in two-dimensional aperiodic photonic structures," Physica E (in the press), doi:10.1016/j.physe.2008.08.039.
  20. J. D. Joannopolous, S. Johnson, R. D. Meade, and J. N. Winn, Photonic crystals: Molding the flow of light (Princeton University, Princeton, 2008).
  21. S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, "Guiding 1.5 ?m light in photonic crystals based on dielectric rods," Appl. Phys. Lett. 85, 6110-6112 (2004). [CrossRef]
  22. M. Tokushima, H. Yamada, and Y. Arakawa, "1.5-?m-wavelength light guiding in waveguides in square-lattice-of-rod photonic crystal slab," Appl. Phys. Lett. 84, 4298-4300 (2004). [CrossRef]
  23. D. N. Chigrin, S. V. Zhukovsky, A. V. Lavrinenko, and J. Kroha, "Coupled nanopillar waveguides optical properties and applications," Phys. Status Solidi A 204, 3647-3661 (2007). [CrossRef]
  24. S. Xiao and N. A. Mortensen, "Highly dispersive photonic band-gap-edge optofluidic biosensors," J. Eur. Opt. Soc. 1, 06026 (2006). [CrossRef]
  25. P. S. Nunes, N. A. Mortensen, J. P. Kutter, and K. B. Mogensen, "Photonic crystal resonator integrated in a microfluidic system," Opt. Lett. 33, 1623-1625 (2008). [CrossRef] [PubMed]
  26. S. V. Boriskina and L. Dal Negro, "Sensitive label-free biosensing using critical modes in aperiodic photonic structures," Opt. Express 16, 12511-12522 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-17-12511. [CrossRef] [PubMed]
  27. C. S. Ryu, G. Y. Oh, and M. H. Lee, "Extended and critical wave functions in a Thue-Morse chain," Phys. Rev. B 46, 5162-5168 (1992). [CrossRef]
  28. L. Kroon, E. Lennholm, and R. Riklund, "Localization-delocalization in aperiodic systems," Phys. Rev. B 66, 094204 (2002). [CrossRef]
  29. L. Kroon and R. Riklund, "Absence of localization in a model with correlation measure as a random lattice," Phys. Rev. B 69, 094204 (2004). [CrossRef]
  30. M. Dulea, M. Johansson, and R. Riklund, "Localization of electrons and electromagnetic waves in a deterministic aperiodic system," Phys. Rev. B 45, 105-114 (1992). [CrossRef]
  31. D. Felbacq, G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," J. Opt. Soc. Am. A 11, 2526-2538 (1994). [CrossRef]
  32. A. A. Asatryan, K. Busch, R. C. McPhedran, L. C. Botten, C. Martijn de Sterke, and N. A. Nicorovici, "Two-dimensional Green’s function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length," Phys. Rev. E 63, 046612 (2001). [CrossRef]
  33. S. V. Pishko, P. Sewell, T. M. Benson, and S. V. Boriskina, "Efficient analysis and design of low-loss WG-mode coupled resonator optical waveguide bends," J. Lightwave Technol. 25, 2487-2494 (2007). [CrossRef]
  34. Y. Lai, Z.-Q. Zhang, C.-H. Chan, and L. Tsang, "Anomalous properties of the band-edge states in large two-dimensional photonic quasicrystals," Phys. Rev. B 76, 165132 (2007). [CrossRef]
  35. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Photonic bound states in periodic dielectric materials," Phys. Rev. B 44, 13772-13774 (1991). [CrossRef]
  36. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67, 3380-3383 (1991). [CrossRef] [PubMed]
  37. A. Yamilov and H. Cao, "Highest-quality modes in disordered photonic crystals," Phys. Rev. A 69, 031803 (2004). [CrossRef]
  38. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173. [CrossRef] [PubMed]
  39. K. Busch and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E 58, 3896-3908 (1998). [CrossRef]
  40. E. Macia, "Physical nature of critical modes in Fibonacci quasicrystals," Phys. Rev. B 60, 10032-10036 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited