OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 18950–18955

CVD-diamond external cavity Raman laser at 573 nm

Richard P. Mildren, James E. Butler, and James R. Rabeau  »View Author Affiliations

Optics Express, Vol. 16, Issue 23, pp. 18950-18955 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (97 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent progress in diamond growth via chemical vapor deposition (CVD) has enabled the manufacture of single crystal samples of sufficient size and quality for realizing Raman laser devices. Here we report an external cavity CVD-diamond Raman laser pumped by a Q-switched 532 nm laser. In the investigated configuration, the dominant output coupling was by reflection loss at the diamond’s uncoated Brewster angle facets caused by the crystal’s inherent birefringence. Output pulses of wavelength 573 nm with a combined energy of 0.3 mJ were obtained with a slope efficiency of conversion of up to 22%.

© 2008 Optical Society of America

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.7300) Lasers and laser optics : Visible lasers
(160.4330) Materials : Nonlinear optical materials
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 25, 2008
Revised Manuscript: October 16, 2008
Manuscript Accepted: October 29, 2008
Published: November 3, 2008

Richard P. Mildren, James E. Butler, and James R. Rabeau, "CVD-diamond external cavity Raman laser at 573 nm," Opt. Express 16, 18950-18955 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. T. Basiev and R. C. Powell, "Solid State Raman Lasers" in Handbook of Laser Technology and Applications, C.E. Webb and J.D.C. Jones eds. (Institute of Physics, UK, 2003).
  2. P. G. Zverev, T. T. Basiev, and A. M. Prokhorov, "Stimulated Raman scattering of laser radiation in Raman crystals," Opt. Mater. 11, 335-352 (1999). [CrossRef]
  3. J. T. Murray, R. C. Powell, N. Peyghambarian, D. Smith, W. Austin, and R. A. Stolzenberger, "Generation of 1.5-?m radiation through intracavity solid-state Raman shifting in Ba(NO3)2 nonlinear crystals," Opt. Lett. 20, 1017-1019 (1995). [CrossRef] [PubMed]
  4. H. M. Pask, "The design and operation of solid-state Raman lasers," Prog. Quantum Electron. 27,3-56 (2003). [CrossRef]
  5. J. A. Piper and H. M. Pask, "Crystalline Raman lasers," IEEE J. Sel. Top. Quantum Electron. 13, 692-704 (2007). [CrossRef]
  6. R. P. Mildren, H. Ogilvy, and J. A. Piper, "Solid-state Raman laser generating discretely tunable ultraviolet between 266 and 320 nm," Opt. Lett. 32, (2007) 814-816. [CrossRef] [PubMed]
  7. A. M. Zaitsev, Optical Properties of Diamond: A Data Handbook (Springer, 2001).
  8. P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, "Ion beam assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond," Adv. Mater. 17, 2427-2430 (2005). [CrossRef]
  9. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, "Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond," Appl. Phys. Lett. 91, 201112-1 - 201112-3 (2007). [CrossRef]
  10. F. Foulon, P. Bergonzo, C. Borel, R. D. Marshall, C. Jany, L. Besombes, A. Brambilla, D. Riedel, L. Museur, M. C. Castex, and A. Gicquel, "Solar blind chemically vapor deposited diamond detectors for vacuum ultraviolet pulsed light-source characterization," Appl. Phys. 84, 5331-5336 (1998).
  11. M. D. Whitfield, S. P. Lansleya, O. Gaudina, R. D. McKeagb, N. Rizvic, and R. B. Jackman, "Diamond photodetector for next generation 157-nm deep-UV photolithography tools," Diamond Relat. Mater. 10, 693-697 (2001). [CrossRef]
  12. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000). [CrossRef] [PubMed]
  13. E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer, and J.-F. Roch, "Room temperature triggered single photon source in the near infrared," New J. Phys. 9, 010434 (2007). [CrossRef]
  14. A. K. McQuillan, W. R. L. Clements, and B. P. Stoicheff, "Stimulated Raman emission in diamond: Spectrum, gain, and angular distribution of intensity," Phys. Rev. A 1, 628-635 (1970). [CrossRef]
  15. P. John, "Toward diamond lasers," Science 292, 1847-1848 (2001). [CrossRef] [PubMed]
  16. A. A. Demidovich, A. S. Grabtchikov, V. A Orlovich, M. B Danailov, and W. Kiefer, "Diode pumped diamond Raman microchip laser," in Conf. Dig. Lasers and Electro-Optics Europe, (Optical Society of America, Washington DC, 2005) pp. 251.
  17. G. Turri, Y. Chen, M. Bass, D. Orchard, J. E. Butler, S. Magana, T. Feygelson, D. Thiel, K. Fourspring, R. V. Dewees, J. M. Bennett, J. Pentony, S. Hawkins, M. Baronowski, A. Guenthner, M. D. Seltzer, D. C. Harris, and C. M. Stickley, "Optical absorption, depolarization, and scatter of epitaxial single-crystal chemical-vapor-deposited diamond at 1.064 µm," Opt. Eng. 46, 064002-1 - 064002-10 (2007). [CrossRef]
  18. H. Herchen and M. A. Capelli, "First-order Raman spectrum of diamond at high temperatures," Phys. Rev. B 43, 740-744 (1991). [CrossRef]
  19. N. S. Nagandra Nath, "The dynamical theory of the diamond lattice. I.," Proc. Indian Acad. Sci. A1, 333-345 (1934).
  20. T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, "Comparative spontaneous Raman spectroscopy of crystals for Raman lasers," Appl. Opt. 38, 594-598 (1999). [CrossRef]
  21. S. N. Karpukhin and A. I. Stepanov, "Generation of radiation in a resonator under conditions of stimulated Raman scattering in Ba(NO3)2, NaNO3 and CaCO3 crystals," Sov. J. Quantum Electron. 16,1027-1031 (1986). [CrossRef]
  22. C. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, "Theory of the thermal expansion of Si and diamond," Phys. Rev. B 43, 5024-5027 (1991). [CrossRef]
  23. C. Ramaswamy, "Raman effect in diamond," Nature 125, 704 (1930). [CrossRef]
  24. G. Eckhardt, D. P. Bortfield, and M. Geller, "Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and a-supfur single crystals," Appl. Phys. Lett. 3,137-138, (1963). [CrossRef]
  25. A. A. Kaminskii, R. J. Hemley, J. Lai, C. S. Yan, H. K. Mao, V. G. Ralchenko, H. J. Eichler, and H. Rhee "High-order stimulated Raman scattering in CVD single crystal diamond," Laser Phys. Lett. 4, 350-353 (2007). [CrossRef]
  26. A. A. Kaminskii, V. G. Ralchenko, V. I. Konov, and H. J. Eichler, "High-order Stokes and anti-Stokes Raman generation in CVD diamond," Phys. Status Solidi 242, R4-R6 (2005). [CrossRef]
  27. N. M. Lawandy and R. S. Afzal, US2005/0163169A1 (2005)
  28. P. Cerny and H. Jelinkova, "Near-quantum-limit efficiency of picosecond stimulated Raman scattering in BaWO4 crystal," Opt. Lett. 27,360-362 (2002). [CrossRef]
  29. C. He and T. H. Chyba, "Solid-state barium nitrate Raman laser in the visible region," Opt. Commun. 135, 273-278 (1997). [CrossRef]
  30. R. P. Mildren, H. M. Pask, and J. A. Piper, " High-efficiency Raman converter generating 1.5W of red-orange output," in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006), paper MC3, http://www.opticsinfobase.org/abstract.cfm?URI=ASSP-2006-MC3.
  31. S. Ding, X. Zhang, Q. Wang, F. Su, S. Li, S. Fan, Z. Liu, J. Chang, S. Zhang, S. Wang, and Y. Liu, "Highly efficient Raman frequency converter with strontium tungstate crystal," IEEE J. Quantum Electron. 42, 78-84 (2006). [CrossRef]
  32. R. P. Mildren, M. Convery, H. M. Pask, J. A. Piper, and T. McKay, "Efficient, all-solid-state, Raman laser in the yellow, orange and red," Opt. Express 12, 785-790 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-5-785. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited