OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 18976–18983

Generation of large alkali vapor densities inside bare hollow-core photonic band-gap fibers

Aaron D. Slepkov, Amar R. Bhagwat, Vivek Venkataraman, Pablo Londero, and Alexander L. Gaeta  »View Author Affiliations

Optics Express, Vol. 16, Issue 23, pp. 18976-18983 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (674 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the ability to generate extremely large rubidium densities in uncoated hollow-core photonic band-gap fibers using light induced atomic desorption. Once the fiber is exposed to Rb vapor for 1-2 weeks, and this atomic source is removed, the fiber yields large desorbable densities for an extended period of time. We show that optical depths greater than e-1200 can be created within seconds. Our observed Rb densities are several orders of magnitude larger than any previously reported to be generated optically, and allow for the demonstration of a relatively easy-to-use fiber-based vapor cell capable of producing large optical depths without the need for thermal tuning.

© 2008 Optical Society of America

OCIS Codes
(020.3690) Atomic and molecular physics : Line shapes and shifts
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Atomic and Molecular Physics

Original Manuscript: September 23, 2008
Revised Manuscript: October 29, 2008
Manuscript Accepted: October 30, 2008
Published: November 3, 2008

Aaron D. Slepkov, Amar R. Bhagwat, Vivek Venkataraman, Pablo Londero, and Alexander L. Gaeta, "Generation of large alkali vapor densities inside bare hollow-core photonic band-gap fibers," Opt. Express 16, 18976-18983 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Schmidt and A. Imamo?lu, "Giant Kerr nonlinearities obtained by electromagnetically-induced transparency," Opt. Lett. 21,1936-1938 (1996). [CrossRef] [PubMed]
  2. G.  Rempe, R. J.  Thompson, R. J.  Brecha, W. D.  Lee, and H. J.  Kimble, "Optical bistability and photon statistics in cavity quantum electrodynamics," Phys. Rev. Lett.  67, 1727-1730 (1991). [CrossRef] [PubMed]
  3. A. Bhagwat and A. L. Gaeta, "Nonlinear optics in hollow-core photonic bandgap fibers," Opt. Express 16,5035-5047 (2008). [CrossRef] [PubMed]
  4. W. G. Yang, D. B. Conkey, B. Wu, D. L. Yin, A. R. Hawkins, and H. Schmidt, "Atomic spectroscopy on a chip," Nature Photon. 1, 331-335 (2007). [CrossRef]
  5. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  6. P. St. J. Russell, "Photonic-Crystal Fibers" J. Lightwave Technol. 24, 4729-4749 (2006). [CrossRef]
  7. D. A. Braje, V. Balic, G. Y. Yin, and S. E. Harris, "Low-light-level nonlinear optics with slow light," Phys. Rev. A 68, 041801 (2003). [CrossRef]
  8. M. D. Lukin, "Colloquium: Trapping and manipulating photon states in atomic ensembles," Rev. Mod. Phys. 75, 457-472 (2003). [CrossRef]
  9. T. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002). [CrossRef] [PubMed]
  10. A. Danielli, P. Rusian, A. Arie, M. H. Chou, and M. M. Fejer, "Frequency stabilization of a frequency doubled 1556-nm source to the 5S1/2?5D5/2 two-photon transitions of rubidium," Opt. Lett. 25, 905-907 (2000). [CrossRef]
  11. D.  Lukin, A.  Imamo?lu, "Controlling photons using electromagnetically induced transparency," Nature  413, 273-276 (2001). [CrossRef] [PubMed]
  12. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers, " Science 301, 1702-1704 (2003). [CrossRef] [PubMed]
  13. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, "Resonant optical interactions with molecules confined in photonic band-gap fibers," Phys. Rev. Lett. 94, 093902 (2005). [CrossRef] [PubMed]
  14. F. Benabid, P. S. Light, F. Couny, and P. St. J. Russell, "Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF," Opt. Express 13, 5694-5703 (2005). [CrossRef] [PubMed]
  15. J. Henningsen, J. Hald, and J. C. Petersen, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005). [CrossRef] [PubMed]
  16. J. T. Robinson, L. Chen, and M. Lipson, "On-chip gas detection in silicon optical microcavities," Opt. Express 16, 4296-4301 (2008). [CrossRef] [PubMed]
  17. S. Ghosh, A. R. Bhagwat, C. K. Renshaw, S. Goh, A. L. Gaeta, and B. J. Kirby, "Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber," Phys. Rev. Lett. 97, 023603 (2006). [CrossRef] [PubMed]
  18. P. S. Light, F. Benabid, F. Couny, M. Maric and A. N. Luiten, "Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber," Opt. Lett. 32, 1323-1325 (2007). [CrossRef] [PubMed]
  19. E. B. Alexandrov, M. V Balabas, D. Budker, D. English, D. F. Kimball, C.-H. Li, and V. V. Yashchuk, "Light-induced desorption of alkali-metal atoms from paraffin coating," Phys. Rev. A 66,042903 (2002). [CrossRef]
  20. A.  Gozzini, F.  Mango, J. H.  Xu, G.  Alzetta, F.  Maccarrone, and R. A.  Bernheim, "Light-induced ejection of alkali atoms in polysiloxane coated cells," Nuovo Cimento 15 D, 709-722 (1993).
  21. D. F. Phillips, A. Boca, and R. L. Walsworth, "Evaporative coating of Rb maser cells," http://cfa-www.harvard.edu/~dphil/work/coat.pdf (1999).
  22. A.  Burchianti, C.  Marinelli, A.  Bogi, J.  Brewer, K.  Rubahn, H.-G.  Rubahn, F.  della Valle, E.  Mariotti, V.  Biancalana, S.  Veronesi, and L.  Moi, "Light-induced atomic desorption from porous silica," Europhys. Lett.  67, 983-989 (2004). [CrossRef]
  23. A. Hatakeyama, M. Wilde and K. Fukutani, "Classification of light-induced desorption of alkali atoms," e-J. Surf. Sci. Nanotech. 4, 63-68 (2006). [CrossRef]
  24. D. A. Steck, 87Rb and 85RB D1 line data, http://steck.us/alkalidata/ (2001).
  25. W. Demtröder, Laser spectroscopy (Springer-Verlag 1973).
  26. M. Faheem, R. Thapa, and K. L. Corwin, "Spectral hole burning of acetylene gas inside a photonic bandgap optical fiber," Conference of Lasers and Electro Optics CLEO 2005, Long Beach Calif., May 2005.
  27. V. S.  Letokhov, High-Resolution Laser Spectroscopy, K. Shimoda, ed., (Springer-Verlag, New York, 1976) pp. 136-138.
  28. N. Kuramochi, S. Naritsuka, and N. Oura, "Composite-type 87Rb optical-pumping light source," Opt. Lett. 6, 73-75 (1981). [CrossRef] [PubMed]
  29. A. B. Matsko, I. Novikova, M. O. Scully, and G. R. Welch, "Radiation trapping in coherent media," Phys. Rev. Lett. 87, 133601 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited