OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 18992–19000

All-optical half adder based on cross structures in two-dimensional photonic crystals

Qiang Liu, Zhengbiao Ouyang, Chih Jung Wu, Chung Ping Liu, and Jong C. Wang  »View Author Affiliations


Optics Express, Vol. 16, Issue 23, pp. 18992-19000 (2008)
http://dx.doi.org/10.1364/OE.16.018992


View Full Text Article

Enhanced HTML    Acrobat PDF (248 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an all-optical half adder based on two different cross structures in two-dimensional photonic crystals. One cross structure contains nonlinear materials and functions as an “AND” logic gate. The other one only contains linear materials and acts as an “XOR” logic gate. The system is demonstrated numerically by the FDTD method to work as expected. The optimal operating speed without considering the response time of the nonlinear material, the least ON to OFF logic-level contrast ratio, and the minimum power for this half adder obtained were 0.91Tbps, 16dB and 436mW, respectively. The proposed structure has the potential to be used for constructing all-optical integrated digital computing circuits.

© 2008 Optical Society of America

OCIS Codes
(200.4660) Optics in computing : Optical logic
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: September 22, 2008
Revised Manuscript: October 28, 2008
Manuscript Accepted: October 29, 2008
Published: November 3, 2008

Citation
Qiang Liu, Zhengbiao Ouyang, Chih Jung Wu, Chung Ping Liu, and Jong C. Wang, "All-optical half adder based on cross structures in two-dimensional photonic crystals," Opt. Express 16, 18992-19000 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-18992


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disoordered dielectric superlattices," Phys. Rev. Lett. 58,2846-2489 (1987). [CrossRef]
  3. J. D. Joannopoulos, "Photonics crystals: putting a new twist on light," Nature (London) 386,143-149 (1997). [CrossRef]
  4. H. M. Gibbs, "Optical Bistability," in Controlling Light with Light, (Academic Press, Orlando, 1985).
  5. E. Centeno and D. Felbacq, "Optical bistability in finite-size nonlinear bidimensional photonic crystal doped by a microcavity," Phys. Rev. B 62, 7683-7686 (2000). [CrossRef]
  6. K. M. F. Yanik, S. Fan, and M. Soijacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83,2739-2741 (2003). [CrossRef]
  7. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 0556011-4 (2002). [CrossRef]
  8. M. F. Yanik, S. Fan, M. Soljacic, and J. D. Joannopoulos, "All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry," Opt. Lett. 28, 2506-2608 (2003). [CrossRef] [PubMed]
  9. Z. -H. Zhu, W. -M. Ye, J. -R. Ji, X. -D. Yuan, and C. Zen, "High-contrast light-by-light swithching and AND gate based on nonlinear photonic crystals," Opt. Express 14, 1783-1788 (2006). [CrossRef] [PubMed]
  10. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005). [CrossRef] [PubMed]
  11. Y. -L. Zhang, Y. Zhang, and B. -J. Li, "Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals," Opt. Express 15, 9287-9292 (2007). [CrossRef] [PubMed]
  12. Yu, X.  and S. Fan, "Bends and splitters for self-collimated beams in photonic crystals," Appl. Phys. Lett. 83, 3251-3253 (2003). [CrossRef]
  13. C. -C. Chen, H. -D. Chien, and P. -G. Luan, "Photonic crystal beam splitters," Appl. Opt. 43, 6187-6190 (2004). [CrossRef] [PubMed]
  14. K. A. Shinya, T. Tanabe, E. Kuramochi, and M. Notomi, "All-optical Switch and Digital Light Processing Using Photonic Crystals," NTT Tech. Rev. 3, 61-68 (2005).
  15. T. Asai, Y. Amemiya, and M. Kosiba, "A Photonic-Crystal Logic Circuit Based on the Binary Decision Diagram," in Proceeding of International Workshop on Photonic and Electromagnetic Crystal Structures, (Academic, Sendai, Japan, 2000), T4-14.
  16. Y. Kawashita, M. Haraguchi, H, Okamoto, M. Fujii, and M. Fukui, "Optical Amplifier Using Nonlinear Nanodefect Cavity in Photonic Crystal," Jpn. J. Appl. Phys. 45, 7724-7728 (2006). [CrossRef]
  17. N. C. Panoiu, M. Bahl, and R. M. Osgood, Jr., "All-optical tunability of a nonlinear photonic crystal channel drop filter," Opt. Express 12, 1605 (2004). [CrossRef] [PubMed]
  18. E. P. Kosmidou and T. D. Tsiboukis, "An FDTD analysis of photonic crystal waveguides comprising third-order nonlinear materials," Opt. Quantum Electron. 35, 931-946 (2003). [CrossRef]
  19. M. Bahl, N. C. Panoiu, and R. M. Osgood, Jr., "Nonlinear optical effects in a two-dimensional photonic crystal containing one-dimensional Kerr defects," Phys. Rev. E 67, 0566041-9 (2003). [CrossRef]
  20. M. L. Povinelli, S. G. Johnson, S. Fan, and J. D. Joannopoulos, "Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap," Phys. Rev. B 64, 0753131-8 (2001). [CrossRef]
  21. H. -H. Lee, K. -M. Chae, S. -Y. Yim, and S. -H. Park, "Finite-difference time-domain analysis of self-focusing in a nonlinear Kerr film," Opt. Express 12, 2603 (2004). [CrossRef] [PubMed]
  22. D. Vujic and S. John, "Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: Critical issues for all-optical switching," Phys. Rev. A 72, 0138071-10 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited