OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 19001–19017

Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries

Jennifer A. Dionne, Ewold Verhagen, Albert Polman, and Harry A. Atwater  »View Author Affiliations

Optics Express, Vol. 16, Issue 23, pp. 19001-19017 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theoretical analysis of planar plasmonic waveguides that support propagation of positive and negative index modes. Particular attention is given to the modes sustained by metal-insulator-metal (MIM), insulator-metal-insulator (IMI), and insulator-insulator-metal (IIM) geometries at visible and near-infrared frequencies. We find that all three plasmonic structures are characterized by negative indices over a finite range of visible frequencies, with figures of merit approaching 20. Moreover, using finite-difference time-domain simulations, we demonstrate that visible-wavelength light propagating from free space into these waveguides can exhibit negative refraction. Refractive index and figure-of-merit calculations are presented for Ag/GaP and Ag/Si3N4 - based structures with waveguide core dimensions ranging from 5 to 50 nm and excitation wavelengths ranging from 350 nm to 850 nm. Our results provide the design criteria for realization of broadband, visible-frequency negative index materials and transformation-based optical elements for two-dimensional guided waves. These geometries can serve as basic elements of three-dimensional negative-index metamaterials.

© 2008 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(240.6680) Optics at surfaces : Surface plasmons
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: October 2, 2008
Revised Manuscript: October 30, 2008
Manuscript Accepted: October 31, 2008
Published: November 3, 2008

Jennifer A. Dionne, Ewold Verhagen, Albert Polman, and Harry A. Atwater, "Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries," Opt. Express 16, 19001-19017 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  2. D. Schurig, J. B. Pendry, and D. R. Smith, "Transformation designed optical elements," Opt. Express 15, 14772-14782 (2007). [PubMed]
  3. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 22, 534-537 (2005). [CrossRef]
  5. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-Field Microscopy Through a SiC Superlens," Science 313, 1595 (2006). [CrossRef] [PubMed]
  6. Z. Jacob, L. A. Alekseyev, and E. Narimanov, "Optical Hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express 14, 8247-8256 (2006). [CrossRef] [PubMed]
  7. N. Engheta, "Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials," Science 317, 1698-1702 (2007). [CrossRef] [PubMed]
  8. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 997-980 (2006). [CrossRef]
  9. A. Alu and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E 72, 016623 (2005). [CrossRef]
  10. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verification of a Negative Index of Refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  11. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon. 1, 41-48 (2007) and references therein. [CrossRef]
  12. A. Alu, A. Salandrino, and N. Engheta, "Negative effective permeability and left-handed materials at optical frequencies," Opt. Express 14, 1557-1567 (2006). [CrossRef] [PubMed]
  13. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature 455, 376-379 (2008). [CrossRef] [PubMed]
  14. H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 97, 097401 (2006) [CrossRef]
  15. E. Verhagen, J. A. Dionne, L. (Kobus) Kuipers, H. A. Atwater, and A. Polman, "Near-field visualization of strongly confined surface plasmon polaritons in metal-insulator-metal waveguides," Nano Lett. 8, 2925-2929 (2008) [CrossRef] [PubMed]
  16. H. Shin and S. Fan, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Phys. Rev. Lett. 96, 073907 (2006) [CrossRef] [PubMed]
  17. G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B. 67, 035109 (2003) [CrossRef]
  18. M. Stockman, "Criteria for negative refraction with low optical losses from a fundamental principle of causality," Phys. Rev. Lett. 98, 177404 (2007) [CrossRef]
  19. A. Karalis, E. Lidorikis, M. Ibenescu, J. D. Joannopoulos, and M. Solja?i?, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005). [CrossRef] [PubMed]
  20. X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, "All-angle broadband negative refraction of metal waveguide arrays in the visible range: Theoretical analysis and numerical demonstration," Phys. Rev. Lett. 97, 073901 (2006) [CrossRef] [PubMed]
  21. H. J. Lezec, J. A. Dionne, and H. A. Atwater, "Negative Refraction at Visible Frequencies," Science 316, 430-432 (2007). [CrossRef] [PubMed]
  22. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, "Magnifying Superlens in the Visible Frequency Range," Science 316, 1699-1701 (2007). [CrossRef]
  23. A. S. Barker and R. Loudon, "Response functions in the theory of Raman scattering by vibrational and polariton modes in dielectric crystals," Rev. Mod. Phys. 44, 18-47 (1972).
  24. V. G. Veselago, "Electrodynamics of Substances with Simultaneously Negative Values of Sigma and Mu," Soviet Physics Uspekhi-Ussr 10, 509-514 (1968). [CrossRef]
  25. M. Stockman, "Slow propagation, anomalous absorption, and total external reflection of surface plasmon polaritons in nanolayer systems," Nano Lett. 6, 2604-2608 (2006). [CrossRef] [PubMed]
  26. R. Ruppin, "Electromagnetic energy density in a dispersive and absorptive material," Phys. Lett. A 299, 309-312 (2002). [CrossRef]
  27. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972) [CrossRef]
  28. Handbook of Optical Constants of Solids, edited by E. Palik (Academic Press, Inc., New York, 1985).
  29. Lumerical FDTD Solutions 6.0.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited