OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 19018–19033

Thermal wavelength stabilization of Bragg gratings photowritten in hole-filled microstructured optical fibers

Nicolas Mothe, Dominique Pagnoux, Minh Chau Phan Huy, Véronique Dewinter, Guillaume Laffont, and Pierre Ferdinand  »View Author Affiliations


Optics Express, Vol. 16, Issue 23, pp. 19018-19033 (2008)
http://dx.doi.org/10.1364/OE.16.019018


View Full Text Article

Enhanced HTML    Acrobat PDF (304 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that the resonance wavelength of fiber Bragg gratings photowritten in the core of microstructured optical fibers can be efficiently stabilized versus temperature by inserting suitable refractive index materials with a negative thermal sensitivity into the holes. By these means, the effective index of the guided mode undergoes thermal variations which counterbalance the effect of the grating period thermal drift. The residual excursion of the resonance wavelength can be limited to less than ± 10 pm over a 70 ℃ range of temperature into Microstructured Optical Fibers (MOFs) having realistic geometrical parameters, and using existing refractive index materials. Low cost passively stabilized reflectors with insertion loss lower than 0.3 dB can be realized by splicing single mode fibers at both ends of a short length of a filled MOF including the fiber Bragg grating.

© 2008 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 20, 2008
Revised Manuscript: July 9, 2008
Manuscript Accepted: July 22, 2008
Published: November 4, 2008

Citation
Nicolas Mothe, Dominique Pagnoux, Minh Chau Phan Huy, Véronique Dewinter, Guillaume Laffont, and Pierre Ferdinand, "Thermal wavelength stabilization of Bragg gratings photowritten in hole-filled microstructured optical fibers," Opt. Express 16, 19018-19033 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-19018


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Othonos and K. Kali, Fiber Bragg Gratings, Fundamentals and Applications in Telecommunications and Sensors (London, Artech House, 1999).
  2. G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett. 4, 823-825 (1989). [CrossRef]
  3. J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, and H. Yamahita, "Temperature-dependence of refractive-index od SiO2 glass," J. Non-Cryst. Solids 135, 86-89 (1991). [CrossRef]
  4. M. J. N. Lima, R. N. Nogueira, J. C. C. Silva, A. L. J. Teixeira, P. S. B. André, J. R. F. da Rocha, H. J. Kalinowski, and J. L. Pinto,"Comparison of the temperature dependence of different types of Bragg gratings," Microwave Opt. Technol. Lett. 45, 305-307 (2005). [CrossRef]
  5. V. Mizrahi, "Components and devices for optical communications based on UV-written-fiber phase gratings," Optical Fiber Communications Conference, San Jose (1993).
  6. A. Doyle, C. Juignet, Y. Painchaud, A. Brown, N. Chummun-Courbet, T. Pelletier, and A. Guy, "FBG-based multi-channel low dispersion WDM filters," Electron. Lett. 38, 1561-1563, (2002). [CrossRef]
  7. L. Liu, H. Zhang, Q. Zhao, Y. Liu, and F. Li, "Temperature-independent FBG pressure sensor with high sensitivity," Opt. Fiber Technol. 13, 78-80 (2007).
  8. D. L. Weidman, G. H. Beall, K. C. Chyung, G. L. Francis, R. A. Modavis, and R. M. Morena, "A novel negative expansion substrate material for athermalizing fiber Bragg gratings," 22nd European Conference on Optical Communication (ECOC'96, Oslo), MoB3.5, 1.61-1.64, (1996).
  9. T. Iwashima, A. Inoue, M. Shigematsu, N. Nishimura, and Y. Hattori, "Temperature compensation technique for fibre gratings using crystalline polymer tubes," Electron. Lett. 33, 417-419 (1997) [CrossRef]
  10. G. W. Yoffe, P. A. Krug, F. Ouellette, and D. A. Thorncraft, "Passive temperature-compensating package for optical fiber gratings," Appl. Opt. 34, 6859-6861 (1995). [CrossRef] [PubMed]
  11. Y. Huang, J. Lie, G. Kai, S. Yuan, and X. Dong, "Temperature compensation package for fiber Bragg gratings," Microwave Opt. Technol. Lett. 39, 70-72 (2003). [CrossRef]
  12. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  13. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in air-silica microstructure fibers," Opt. Lett. 24, 1460-1462 (1999). [CrossRef]
  14. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, "Bragg gratings in air-silica structured fibers," Opt. Lett. 28, 233-235 (2003). [CrossRef] [PubMed]
  15. L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Mägi, M. J. Withford, and B. J. Eggleton, "Femtosecond laser writing Bragg gratings in pure silic photonic crystal fibres," Electron. Lett. 41, 638-640 (2005). [CrossRef]
  16. C. Martelli, J. Canning, N. Groothoff, and K. Lyytikainen, "Strain and temperature characterization of photonic crystal fiber gratings," Opt. Lett. 30, 1785-1787 (2005). [CrossRef] [PubMed]
  17. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, D. Pagnoux, B. Dussardier, and W. Blanc, "Passive temperature-compensating technique for microstructured fiber Bragg gratings," to be published in IEEE Sensors Journal, August 2008.
  18. J. H. Wray and J. T. Neu, "Refractive index of several glasses as a function of wavelength and temperature," J. Opt. Soc. Am. 59, 774-776 (1969). [CrossRef]
  19. Internet site: http://www.cargille.com
  20. Z. Zhang, P. Zhao, P. Lin, and F. Sun, "Thermo-optic coefficients of polymers for optical waveguide applications," Polymer 47, 4893-4896 (2006). [CrossRef]
  21. P. Domachuk, H. C. Nguyen, B. J. Eggleton, M. Straub, and M. Gu, "Microfluidic tunable photonic band-gap device," Appl. Phys. Lett. 84, 1838-1840 (2004). [CrossRef]
  22. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004). [CrossRef]
  23. F. Bréchet, J. Marcou, D. Pagnoux, and P. Roy, "Complete analysis of the propagation characteristics into photonic crystal fibers by the finite element method," Opt. Fiber Technol. 6, 181-191 (2000). [CrossRef]
  24. Internet site: http://www.accuratus.com/fused.html.
  25. S. H. Kim and C. K. Hwangbo, "Temperature dependence of transmission center wavelength of narrow bandpass filters prepared by plasma ion assisted deposition," J. Korean Phys. Soc. 45, 93-98 (2004).
  26. T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  27. D. Marcuse, "Gaussian approximation of the fundamental modes of graded-index fibers," J. Opt. Soc. Am. 68, 103-109 (1978). [CrossRef]
  28. Internet site: http://www.chemoptics.co.kr.
  29. D. M. Yeo and S. Y. Shin, "Polymer-silica hybrid 1X2 thermooptic switch with low crosstalk," Opt. Commun. 267, 388-396 (2006). [CrossRef]
  30. E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, "Photonic crystal fiber design by means of a genetic algorithm," Opt. Express 12, 1990-1995 (2004). [CrossRef] [PubMed]
  31. D. Bosc, N. Devoldère, M. Bonnel, J. L. Favennec, and D. Pavy, "Hybrid silica-polymer structure for integrated optical waveguides with new potentialities," Mater. Sci. Eng. 57, 155-160 (1999). [CrossRef]
  32. B. Bourliaguet, C. Paré, F. Émond, A. Croteau, A. Proulx, and R. Vallée, "Microstructured fiber splicing," Opt. Express 11, 3412-3417 (2003). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited