OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 19063–19071

Transmission performance of a wavelength and NRZ-to-RZ format conversion with pulsewidth tunability by combination of SOA- and fiber-based switches

Hung Nguyen Tan, Motoharu Matsuura, and Naoto Kishi  »View Author Affiliations


Optics Express, Vol. 16, Issue 23, pp. 19063-19071 (2008)
http://dx.doi.org/10.1364/OE.16.019063


View Full Text Article

Acrobat PDF (193 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An all-optical signal processing scheme coupling wavelength conversion and NRZ-to-RZ data format conversion with pulsewidth tunability into one by combination of SOA- and fiber-based switches, is experimentally demonstrated, and its transmission performance is investigated. An 1558 nm NRZ data signal is converted to RZ data format at 1546 nm with widely tunable pulsewidth from 20 % to 80 % duty cycle at the bit-rate of 10 Gb/s. The investigation on transmission performance of the converted RZ signals at each different pulsewidth is carried out over various standard single-mode fiber (SSMF) links up to 65 km long without dispersion compensation. The results clarify a significant improvement on transmission performance of converted signal in comparison with the conventional NRZ signal through tunable pulsewidth management and show the existence of an optimal pulsewidth for the RZ data format at each transmission distance with particular cumulative dispersion. The optimal pulsewidths of the converted RZ signal and its corresponding power penalties against the NRZ signal are also investigated in different SSMF links.

© 2008 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(250.4745) Optoelectronics : Optical processing devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 13, 2008
Revised Manuscript: September 25, 2008
Manuscript Accepted: September 29, 2008
Published: November 4, 2008

Citation
Hung Nguyen Tan, Motoharu Matsuura, and Naoto Kishi, "Transmission performance of a wavelength and NRZ-to-RZ format conversion with pulsewidth tunability by combination of SOA- and fiber-based switches," Opt. Express 16, 19063-19071 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-19063


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. Yu, L.-S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, "Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber," IEEE Photon. Technol. Lett. 17, 636-638 (2005). [CrossRef]
  2. L. Boivin, and G. J. Pendock, "Receiver sensitivity for optically amplified RZ signals with arbitrary duty cycle," in Proc. Optical Amplifiers and its Applications (OAA), (1998), pp. 292-295.
  3. M. Matsuura, N. Kishi, and T. Miki, "Performances of a widely pulsewidth-tunable multiwavelength pulse generator by a single SOA-based delayed interferometric switch," Opt. Express 13, 10010-10021 (2005). http://www.opticsexpress.org/abstract.cfm?uri=oe-13-25-10010. [CrossRef]
  4. L.-S. Yan, S. M. R. Motaghian Nezam, A. B. Sahin, J. E. McGeehan, T. Luo, Q. Yu, and AlanE. Willner, "Performance optimization of RZ data format in WDM systems using tunable pulse-width management at the transmitter," J. Lightwave Technol. 23, 1063-1067 (2005). [CrossRef]
  5. A. Sano, Y. Miyamoto, T. Kataoka, and K. Hagimoto, "Long-span repeaterless transmission systems with optical amplifiers using pulse width management," J. Lightwave Technol. 16, 977-985 (1998). [CrossRef]
  6. L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, "All-optical data format conversion between RZ and NRZ based on a Mach-Zehnder interferometric wavelength converter," IEEE Photon. Technol. Lett. 15, 308-310 (2003). [CrossRef]
  7. X. Yang, R. J. Manning, A. K. Mishra, R. P. Webb, A. D. Ellis, and D. Cotter, "Application of semiconductor optical amplifiers in high-speed all-optical NRZ to RZ format conversion," in Proc. International Conference on Transparent Optical Networks (ICTON), (2007), pp. 228-231.
  8. C. G. Lee, Y. J. Kim, C. S. Park, H. J. Lee, and C.-S. Park, "Experimental demonstration of 10-Gb/s data format conversions between NRZ and RZ using SOA-loop-mirror," J. Lightwave Technol. 23, 834-841 (2005). [CrossRef]
  9. Y. Yan, L. Yin, Y. Zhou, G. Liu, J. Wu, and J. Lin, "10Gbit/s all-optical NRZ to RZ conversion based on TOAD," Proc. SPIE 6025, 177-182 (2006).
  10. S. B. Jun, K. J. Park, H. Kim, H. S. Chung, J. H. Lee, and Y. C. Chung, "Passive optical NRZ-to-RZ converter," in Proc. Optical Fiber Communication Conference (OFC), (2004), ThN1.
  11. G. W. Lu, L. K. Chen, and C. K. Chan, "Novel NRZ-to-RZ format conversion with tunable pulsewidth using phase modulator and interleaver," in Proc. Optical Fiber Communication Conference (OFC), (2006), JThB32.
  12. H. Nguyen Tan, M. Matsuura, and N. Kishi, "Pulsewidth tunable NRZ-to-RZ data format conversion by combination of SOA- and fiber-based switches," in Proc. OptoElectronics and Communications Conference (OECC/ACOFT), (2008), TuF-5.
  13. M. Matsuura, K. Chida, N. Kishi, and T. Miki, "Pulse-width tunable waveform conversion by combination of fiber- and SOA-based switches," in Proc. Asia-Pacific Conference on Communications (APCC), (2007), FPM 2-1-1.
  14. M. Matsuura, and N. Kishi, "All-optical wavelength and pulsewidth conversions with a Sagnac interferometer semiconductor based switch," Opt. Lett. 28, 132-134 (2003). [CrossRef]
  15. A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999). [CrossRef]
  16. Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photon. Technol. Lett. 13, 469-471 (2001). [CrossRef]
  17. M. Matsuura, N. Kishi, and T. Miki, "Ultrawideband wavelength conversion using cascaded SOA-based wavelength converters," J. Lightwave Technol. 25, 38-45 (2007). [CrossRef]
  18. A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, "Extinction ratio improvement by four-wave mixing in dispersion-shifted fiber," Electron. Lett. 39, 230-232 (2003). [CrossRef]
  19. M. Tanaka, and M. Shigematsu, "Chirp compensation using four-wave mixing and its application to 10-Gb/s directly modulated signal transmission over SMF," IEEE Photon. Technol. Lett. 16, 1957-1959 (2004). [CrossRef]
  20. K. K. Chow, C. Shu, Chinlon Lin, and A. Bjarklev, "Extinction ratio improvement by pump-modulated fourwave mixing in a dispersion-flattened nonlinear photonic crystal fiber," Opt. Express 13,8900-8905 (2005). http://www.opticsexpress.org/abstract.cfm?uri=OE-13-22-8900. [CrossRef]
  21. J. P. R. Lacey, G. J. Pendock, and R. S. Tucker, "All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 8, 885-887 (1996). [CrossRef]
  22. M. W. Maeda, W. B. Sessa,W. I. Way, A. Yi-Yan, L. Curtis, R. Spicer, and R. I. Laming, "The effect of four-wave mixing in fibers on optical frequency-division multiplexed systems," J. Lightwave Technol. 8, 1402-1408 (1990). [CrossRef]
  23. S. G. Park, L. H. Spiekman, M. Eiselt, and J. M. Wiesenfeld, "Chirp consequences of all-optical RZ to NRZ conversion using cross-phase modulation in an active semiconductor photonic integrated circuit," IEEE Photon. Technol. Lett. 12, 233-235 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited