OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 19072–19077

Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier

A. Capua, S. O’Duill, V. Mikhelashvili, G. Eisenstein, J.P. Reithmaier, A. Somers, and A. Forchel  »View Author Affiliations

Optics Express, Vol. 16, Issue 23, pp. 19072-19077 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (957 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate multi wavelength processing in a broad band 1550 nm quantum dash optical amplifier. Two 10Gbit/s signals, spectrally separated by 30nm are individually wavelength converted via four wave mixing (FWM) with no cross talk. High power signal levels cause depletion of high energy and wetting layer states resulting in some homogenizing of the gain medium and generation of cross FWM components near each channel due to FWM in the other channel. These do not affect the cross-talk-less multichannel processing except when the two channels use equal detuning between signal and pump.

© 2008 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: August 26, 2008
Revised Manuscript: October 16, 2008
Manuscript Accepted: October 26, 2008
Published: November 4, 2008

A. Capua, S. O'duill, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, and A. Forchel, "Cross talk free multi channel processing of 10 Gbit/s data via four wave mixing in a 1550 nm InAs/InP quantum dash amplifier," Opt. Express 16, 19072-19077 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, "High-Speed Mode-Locked Quantum-Dot Lasers and Optical Amplifiers," Proc. IEEE 95, 1767-1778 (2007). [CrossRef]
  2. T. Akiyama, M. Sugawara, and Y. Arakawa, "Quantum-Dot Semiconductor Optical Amplifiers," Proc IEEE 95, 1757-1766 (2007). [CrossRef]
  3. J. P. Reithmaier, G. Eisenstein, and A. Forchel, "InAs/InP Quantum-Dash Lasers and Amplifiers," Proc. IEEE 95, 1779-1790 (2007). [CrossRef]
  4. A. Bilenca, R. Alizon, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, "InAs / InP 1550 nm Quantum Dash Semiconductor Optical Amplifiers," Electron. Lett. 38, 1350-1351 (2002). [CrossRef]
  5. M. Sugawara, Self-assembled InGaAs/GaAs quantum dots in Semiconductors and semimetals, (Academic Press, 1999) Vol. 60.
  6. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. SomersJ. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, "Gain and Noise Saturation of Wide Band InAs/InP Quantum Dash Optical Amplifiers: Model and Experiments," IEEE J. Sel. Top. Quantum. Electron. 11, 1015-1026 (2005). [CrossRef]
  7. P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, "Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers," IEEE Photon. Technol. Lett. 12, 594-596 (2000). [CrossRef]
  8. M. van der Poel, J. Mørk, A. Somers, A. Forchel, J. P. Reithmaier, and G. Eisenstein, "Ultrafast Gain And Index Dynamics of Quantum Dash Structures Emitting at 1.55 ?m," Appl. Phys. Lett. 89, 081102 (2006). [CrossRef]
  9. Y. Nambu, A. Tomita, H. Saito, and K. Nishi, "Effects of Spectral Broadening and Cross Relaxation on the Gain Saturation Characteristics of Quantum Dot Laser Amplifiers," Jpn. J. Appl. Phys. 38, 5087-5095 (1999). [CrossRef]
  10. R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, "Cross Saturation Dynamics in InAs/InP Quantum Dash Optical Amplifiers Operating at 1550 nm," Electron. Lett. 41, 63-64 (2005). [CrossRef]
  11. R. Alizon, D. Hadass, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, "Multiple Wavelength Amplification in a Wide Band High Power 1550-nm Quantum Dash Optical Amplifier," Electron. Lett. 40, 760-761 (2004). [CrossRef]
  12. R. Bonk, C. Meuer, T. Vallaitis, S. Sygletos, P. Vorreau, S. Ben-Ezra, S. Tsadka, A. R. Kovsh, I. L. Krestnikov, M. Laemmlin, D. Bimberg, W. Freude, and J. Leuthold, "Single and Multiple Channel Operation Dynamics of Linear Quantum-Dot Semiconductor Optical Amplifier," ECOC 2008 paper number Th.1.C.2.
  13. A. Capua, V. Mikhelashvili, G. Eisenstein, J. P. Reithmaier, A. Somers, A. Forchel, M. Calligaro, O. Parillaud, and M. Krakowski, "Direct Observation of The Coherent Spectral Hole in The Noise Spectrum of a Saturated InAs/InP Quantum Dash Amplifier Operating Near 1550 nm," Opt. Express 16, 2141-2146 (2008). [CrossRef] [PubMed]
  14. A. Bilenca, R. Alizon, V. Mikhelashvili, D. DahanG. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, "Broad band Wavelength Conversion Based on Cross-Gain-Modulation and Four-Wave-Mixing in InAs/InP Quantum-Dash Semiconductor Optical Amplifiers Operating at 1550 nm," IEEE Photon. Technol. Lett. 15, 563-565 (2003). [CrossRef]
  15. T. Akiyama, H. Kuwatsuka, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, "Symmetric highly efficient (0 dB) wavelength conversion based on four wave mixing in quantum dot optical amplifiers," IEEE Photon. Technol. Lett. 14, 1139-1141 (2002). [CrossRef]
  16. D. Nielsen, S. L. Chuang, N. J. Kim, D. Lee, S. H. Pyun, W. G. Jeong, C. Y. Chen, and T. S. lay, "High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers," Appl. Phys. Lett. 92, 211101 (2008). [CrossRef]
  17. D. Bimberg, M. Grundmann, N. N. Ledentsov, Quantum dot heterostructures (John Wiley & Sons, 1999).
  18. Ultrashort Light Pulses, and S. L.  Shapero, ed., Topics in Applied Physics, (Springer-Verlag, 1984) Chap. 3. [CrossRef]
  19. H. Dery and G. Eisenstein, "Self Consistent Rate Equations of Self Assembly Quantum Wire Lasers," IEEE J. Quantum Electron. 40, 1398-1409 (2004). [CrossRef]
  20. J. M. Tang and K. A. Shore, "Strong picosecond optical pulse propagation in semiconductor optical amplifiers at transparency," IEEE J. Quantum Electron. 34, 1263-1269 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited