OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 19097–19111

Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors

Marcelo A. Soto, Gabriele Bolognini, and Fabrizio Di Pasquale  »View Author Affiliations


Optics Express, Vol. 16, Issue 23, pp. 19097-19111 (2008)
http://dx.doi.org/10.1364/OE.16.019097


View Full Text Article

Enhanced HTML    Acrobat PDF (283 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical and experimental analysis of optical pulse coding techniques applied to distributed optical fiber temperature sensors based on spontaneous Brillouin scattering using the Landau-Placzek ratio (LPR) scheme is presented, quantifying in particular the impact of Simplex coding on stimulated Brillouin and Raman power thresholds. The signal-to-noise ratio (SNR) enhancement and temperature resolution improvement provided by coding are also characterized. Experimental results confirm that, differently from Raman-based sensors, pulse coding affects the stimulated Brillouin threshold, resulting in lower optimal input power levels; these features allow one to achieve high sensing performance avoiding the use of high peak power pulses.

© 2008 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(290.5830) Scattering : Scattering, Brillouin
(120.4825) Instrumentation, measurement, and metrology : Optical time domain reflectometry

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 12, 2008
Revised Manuscript: October 17, 2008
Manuscript Accepted: October 17, 2008
Published: November 4, 2008

Citation
Marcelo A. Soto, Gabriele Bolognini, and Fabrizio Di Pasquale, "Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors," Opt. Express 16, 19097-19111 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-19097


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. "Optical-fibre Sensors," Tech. Focus Nature Photon. 2, 143-158 (2008).
  2. H. H. Kee, G. P. Lees, and T. P. Newson, "1.65 ?m Raman-based distributed temperature sensor," Electron. Lett. 35, 1869-1871 (1999). [CrossRef]
  3. M. Niklès, L. Thévenaz, and P. A. Robert, "Simple distributed fiber sensor based on Brillouin gain spectrum analysis," Opt. Lett. 21, 758-760 (1996). [CrossRef] [PubMed]
  4. X. Bao, L. Zou, Q. Yu, and L. Chen, "Development and applications of the distributed temperature and strain sensors based on Brillouin scattering," in Proceeding of IEEE Sensors Conf.2004, vol 3, pp. 1210 - 1213.
  5. Y. T. Cho, M. Alahbabi, M. J. Gunning, and T. P. Newson, "50-km single-ended spontaneous-Brillouin-based distributed-temperature sensor exploiting pulsed Raman amplification," Opt. Lett. 28, pp. 1651-1653 (2003). [CrossRef] [PubMed]
  6. X. Bao, D. J. Webb, and D. A. Jackson, "Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber," Opt. Lett. 19, 141-143 (1994). [CrossRef] [PubMed]
  7. K. Hotate and M. Tanaka, "Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-cased continuous-wave technique," IEEE Photon. Technol. Lett. 14, 197-199 (2002). [CrossRef]
  8. A. Minardo et al., "A reconstruction technique for long-range stimulated Brillouin scattering distributed fibre-optic sensors: experimental results," Meas. Sci. Technol. 16, 900-908 (2005). [CrossRef]
  9. M. A. Soto, P. K. Sahu, G. Bolognini, and F. Di Pasquale, "Brillouin-based distributed temperature sensor employing pulse coding," IEEE Sens. J. 8, 225-226 (2008). [CrossRef]
  10. P. C. Wait and T. P. Newson, "Landau Placzek ratio applied to distributed fiber sensing," Opt. Commun. 122, 141-146 (1996). [CrossRef]
  11. K. De. Souza et al, "Improvement of signal-to-noise capabilities of a distributed temperature sensor using optical preamplification," Meas. Sci. Technol. 12, 952- 957 (2001).
  12. P. C. Wait, K. De Souza, and T. P. Newson, "A theoretical comparison of spontaneous Raman and Brillouin based fibre optic distributed temperature sensors," Opt. Commun. 144, 17-23 (1997). [CrossRef]
  13. K. De Souza and T. P. Newson, "Brillouin-based fiber-optic distributed temperature sensor with optical preamplification," Opt. Lett. 25, 1331-1333 (2000). [CrossRef]
  14. Y. T. Cho, M. N. Alahbabi, M. J. Gunning, and T. P. Newson, "Enhanced performance of long range Brillouin intensity based temperature sensors using remote Raman amplification," Meas. Sci. Technol. 15, 1548-1552 (2004). [CrossRef]
  15. Y. T. Cho, M. N. Alahbabi, G. Brambilla, and T. P. Newson, "Distributed Raman Amplification Combined With a Remotely Pumped EDFA Utilized to Enhance the Performance of Spontaneous Brillouin-Based Distributed Temperature Sensors," IEEE Photon. Technol. Lett. 17, 1256-1258 (2005). [CrossRef]
  16. J. Park et al, "Raman-based distributed temperature sensor with Simplex coding and link optimization," IEEE Photon. Technol. Lett. 18, 1879-1881 (2006). [CrossRef]
  17. M. Nazarathy et al., "Real-time long-range complementary correlation optical time-domain reflectometer," J. Lightwave Technol. 7, 24-38 (1989). [CrossRef]
  18. M. D. Jones, "Using Simplex codes to improve OTDR Sensitivity," IEEE Photon. Technol. Lett. 15, 822-824 (1993). [CrossRef]
  19. D. Lee et al, "Analysis and Experimental Demonstration of Simplex Coding Technique for SNR Enhancement of OTDR," In Proceeding of IEEE LTIMC, (New York, USA, 2004), pp. 118-122,
  20. M. Harwit and N. J. A. Sloane, Hadamard Transform Optics (New York: Academic, 1979).
  21. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (New York: Academic, 1995).
  22. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II, (Wiley New York, 1962).
  23. Y. Aoki, K. Tajima, and I. Mito, "Input Power Limits of Single-Mode Optical Fibers due to Stimulated Brillouin Scattering in Optical Communication Systems," J. Lightwave Technol. 6, 710-719 (1988). [CrossRef]
  24. K. De Souza, "Significance of coherent Rayleigh noise in fibre-optic distributed temperature sensing based on spontaneous Brillouin scattering," Meas. Sci. Technol. 17, 1065-1069 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited