OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 19136–19145

Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal

Murray W. McCutcheon and Marko Lončar  »View Author Affiliations


Optics Express, Vol. 16, Issue 23, pp. 19136-19145 (2008)
http://dx.doi.org/10.1364/OE.16.019136


View Full Text Article

Enhanced HTML    Acrobat PDF (393 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A photonic crystal nanocavity with a Quality (Q) factor of 1.4×106, a mode volume of 0.78(λ/n)3, and an operating wavelength of 637 nm is designed in a silicon nitride (SiN x ) ridge waveguide with refractive index of 2.0. The effect on the cavity Q factor and mode volume of single diamond nanocrystals of various sizes and locations embedded in the center and on top of the nanocavity is simulated, demonstrating that Q>1×106 is achievable for realistic parameters. An analysis of the figures of merit for cavity quantum electrodynamics reveals that strong coupling between an embedded diamond nitrogen-vacancy center and the cavity mode is achievable for a range of cavity dimensions.

© 2008 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(270.5580) Quantum optics : Quantum electrodynamics
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: September 25, 2008
Revised Manuscript: October 27, 2008
Manuscript Accepted: October 31, 2008
Published: November 4, 2008

Citation
Murray W. McCutcheon and Marko Loncar, "Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal," Opt. Express 16, 19136-19145 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-19136


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Miller, T. E. Northrup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, "Trapped atoms in cavity QED: coupling quantized light and matter," J. Phys. B 38, S551-S565 (2005). [CrossRef]
  2. H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, "Cavity quantum electrodynamics," Rep. Prog. Phys. 69, 1325-1382 (2006). [CrossRef]
  3. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Phys. Rev. Lett. 69, 3314-3317 (1992). [CrossRef] [PubMed]
  4. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  5. J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004). [CrossRef] [PubMed]
  6. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007). [CrossRef] [PubMed]
  7. K. Srinivasan and O. Painter, "Linear and nonlinear optical spectroscopy of a strongly coupled microdiskquantum dot system," Nature 450, 862-865 (2007). [CrossRef] [PubMed]
  8. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007). [CrossRef] [PubMed]
  9. L. Childress, M. V. G. Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, "Coherent dynamics of coupled electron and nuclear spins in diamond," Science 314, 281-285 (2006). [CrossRef] [PubMed]
  10. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000). [CrossRef] [PubMed]
  11. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wachtrup, "Room-temperature coherent coupling of single spins in diamond," Nat. Phys. 2, 408-413 (2006). [CrossRef]
  12. M. V. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, "Quantum register based on individual electronic and nuclear spin qubits in diamond," Science 316, 1312-1316 (2007). [CrossRef] [PubMed]
  13. C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, "Coherent population trapping of single spins in diamond under optical excitation," Phys. Rev. Lett. 97, 247401 (2006). [CrossRef]
  14. R. Hanson, F. M. Mendoza, R. J. Epstein, and D. D. Awschalom, "Polarization and readout of coupled single spins in diamond," Phys. Rev. Lett. 97, 087601 (2006). [CrossRef] [PubMed]
  15. J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, "Generation of single color centers by focused nitrogen implantation," Appl. Phys. Lett. 87, 261909 (2005). [CrossRef]
  16. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillations in a single electron spin," Phys. Rev. Lett. 92, 076401 (2004). [CrossRef] [PubMed]
  17. A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, "Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms," Phys. Rev. A 73, 013818 (2006). [CrossRef]
  18. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, "Quantum state transfer and entanglement distribution among distant nodes in a quantum network," Phys. Rev. Lett. 78, 3221-3224 (1997). [CrossRef]
  19. S. J. van Enk, J. I. Cirac, and P. Zoller, "Ideal quantum communication over noisy channels: A quantum optical implementation," Phys. Rev. Lett. 78, 4293-4296 (1997). [CrossRef]
  20. Y. Shen, T. M. Sweeney, and H. Wang, "Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals," Phys. Rev. B 77, 033201 (2008). [CrossRef]
  21. Y.-S. Park, A. K. Cook, and H. Wang, "Cavity QED with diamond nanocrystals and silica microspheres," Nano Lett. 6, 2075-2079 (2006). [CrossRef] [PubMed]
  22. S. Tomljenovic-Hanic, M. J. Steel, and C. M. de Sterke, "Diamond based photonic crystal microcavities," Opt. Express 14, 3556-3562 (2006). [CrossRef] [PubMed]
  23. C. Kreuzer, J. Riedrich-Moller, E. Neu, and C. Becher, "Design of photonic crystal microcavities in diamond films," Opt. Express 16, 1632-1644 (2008). [CrossRef] [PubMed]
  24. I. Bayn and J. Salzman, "Ultra high-Q photonic crystal nanocavity design: The effect of a low-index slab material," Opt. Express 16, 4972 (2008). [CrossRef] [PubMed]
  25. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, "Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond," Appl. Phys. Lett. 91, 201112 (2007). [CrossRef]
  26. K. Rivoire, A. Faraon, and J. Vu?ckovi’c, "Gallium phosphide photonic crystal nanocavities in the visible," Appl. Phys. Lett. 93, 063103 (2008). [CrossRef]
  27. P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, "Integration of fiber-coupled high-Q SiNx microdisks with atom chips," Appl. Phys. Lett. 13, 801 (2005).
  28. M. Eichenfeld, C. P. Michael, R. Perahia, and O. Painter, "Actuation of micro-optomechanical systems via cavityenhanced optical dipole forces," Nat. Photonic.s 1, 416-422 (2007). [CrossRef]
  29. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005). [CrossRef]
  30. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  31. M. Barth, N. Nusse, J. Stingl, B. Lochel, and O. Benson, "Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities," Appl. Phys. Lett. 93, 021112 (2008). [CrossRef]
  32. P. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high-Q, small-V microcavities," IEEE J. Quantum Electron. 39, 1430-1438 (2003). [CrossRef]
  33. P. Lalanne and S. M. J. P. Hugonin, "Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities," Opt. Express 12, 458-467 (2004). [CrossRef] [PubMed]
  34. C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, "Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities," Opt. Express 13, 245-255 (2005). [CrossRef] [PubMed]
  35. M. Barth, J. Kouba, J. Stingl, B. Lochel, and O. Benson, "Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities," Opt. Express 15, 17231-17240 (2007). [CrossRef] [PubMed]
  36. We use Lumerical FDTD Solutions for all our simulations.
  37. O. Painter, J. Vuckovic, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," J. Opt. Soc. Am. B 16, 275-285 (1999). [CrossRef]
  38. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005). [CrossRef] [PubMed]
  39. M. Notomi, E. Kuramochi, and H. Taniyama, "Ultrahigh-Q nanocavity with 1D photonic gap," Opt. Express 16, 11095-11102 (2008). [CrossRef] [PubMed]
  40. Y. Zhang and M. Loncar, "Ultra-high quality factor optical resonators based on semiconductor nanowires," Opt. Express 16, 17400-17409 (2008). [CrossRef] [PubMed]
  41. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001). [CrossRef]
  42. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Optimization of the Q factor in photonic crystal micro-cavities," IEEE J. Quantum Electron. 38, 850-856 (2002). [CrossRef]
  43. A. R. M. Zain, M. Gnan, H. M. H. Chong, M. Sorel, and R. M. D. L. Rue, "Tapered photonic crystal microcavities embedded in photonic wire waveguides with large resonance Quality-factor and high transmission," IEEE Photon. Technol. Lett. 20, 6-8 (2008). [CrossRef]
  44. K. Hennessy, A. Badolato, P. M. Petroff, and E. L. Hu, "Positioning photonic crystal cavities to single InAs quantum dots," Photon. Nanostruct. 2, 65-72 (2004). [CrossRef]
  45. A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005). [CrossRef] [PubMed]
  46. A. F. Koenderink, M. Kafesaki, C. M. Soukoulis, and V. Sandoghdar, "Spontaneous emission in the near field of two-dimensional photonic crystals," Opt. Lett. 30, 3210-3212 (2005). [CrossRef] [PubMed]
  47. A. Bevaratos, S. Kuhn, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, "Room temperature stable singlephoton source," Eur. Phys. J. D 18, 191-196 (2002). [CrossRef]
  48. J.-M. Gerard, "Solid-state cavity-quantum electrodynamics with self-assembled quantum dots" in Single quantum dots: fundamentals, applications, and new concepts, P. Michler, ed., (Springer, 2003), pp. 269-314.
  49. P. E. Barclay, "Fiber-coupled nanophotonic devices for nonlinear optics and cavity QED," PhD. Thesis, California Institute of Technology (2007).
  50. P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, "Stark shift control of single optical centers in diamond," Phys. Rev. Lett. 97, 083002 (2006). [CrossRef] [PubMed]
  51. M. G. Banaee, A. G. Pattantyus-Abraham, M. W. McCutcheon, G. W. Rieger, and J. F. Young, "Efficient coupling of photonic crystal microcavity modes to a ridge waveguide," Appl. Phys. Lett. 90, 193106 (2007). [CrossRef]
  52. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Na. Photonics 1, 49-52 (2007). [CrossRef]
  53. M. W. McCutcheon, A. G. Pattantyus-Abraham, G. W. Rieger, and J. F. Young, "Emission spectrum of electromagnetic energy stored in a dynamically perturbed optical microcavity," Opt. Express 15, 11472-11480 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited