OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 19192–19200

Image restoration for fluorescence lifetime imaging microscopy (FLIM)

Dhruv Sud and Mary-Ann Mycek  »View Author Affiliations

Optics Express, Vol. 16, Issue 23, pp. 19192-19200 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (632 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Computational image restoration finds wide applicability for fluorescence intensity imaging. Relatively little work in this regard has been performed on FLIM images, which also suffer from diminished spatial resolution. In this work, we report two separate approaches to enhance FLIM image quality while maintaining lifetime accuracy. A 2D-image restoration algorithm was employed to improve resolution in gated intensity images of various samples including fluorescent beads, living cells and fixed tissue samples. The restoration approach improved lifetime image quality without significant variation in lifetime. Further, overlaying a restored-intensity image over the native lifetime image provided even better results, where the resulting lifetime map had spatial features similar to the intensity map. 2D and 3D image restoration also benefit from advances in computational power and hence holds potential for enhancing FLIM resolution, particularly in ICCD-based wide-field FLIM systems, without sacrificing vital quantitative information.

© 2008 Optical Society of America

OCIS Codes
(100.3020) Image processing : Image reconstruction-restoration
(170.0180) Medical optics and biotechnology : Microscopy
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(100.1455) Image processing : Blind deconvolution

ToC Category:
Image Processing

Original Manuscript: August 27, 2008
Revised Manuscript: October 30, 2008
Manuscript Accepted: November 3, 2008
Published: November 5, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Dhruv Sud and Mary-Ann Mycek, "Image restoration for fluorescence lifetime imaging microscopy (FLIM)," Opt. Express 16, 19192-19200 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. W. Chang, D. Sud, and M. A. Mycek, "Fluorescense lifetime imagining microscopy," Methods Cell Bio. 81, 495-524 (2007). [CrossRef]
  2. Y. Chen and J. D. Mills, "Protein localization in living cells and tissues using FRET and FLIM," Differentiation 71, 528-541 (2003). [CrossRef] [PubMed]
  3. I. Konig, J. P. Schwarz, and K. I. Anderson, "Fluorescence lifetime imaging: Association of cortical actin with a PIP3-rich membrane compartment," Eur. J. Cell. Biol. 87, 735-741 (2008). [CrossRef] [PubMed]
  4. D. Schweitzer,S. Schenke, M. Hammer, F. Schweitzer, S. Jentsch, E. Birckner, W. Becker, and A. Bergmann, "Towards metabolic mapping of the human retina," Microsc. Res. Tech. 70, 410-419 (2007). [CrossRef] [PubMed]
  5. D. Sud, W. Zhong, D. G. Beer, and M. A. Mycek, "Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models," Opt. Express 14, 4412-4426 (2006). [CrossRef] [PubMed]
  6. K. K. Sharman, A. Periasamy, H. Ashworth, J. N. Demas, and N. H. Snow, "Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes," Anal. Chem. 71, 947-952 (1999). [CrossRef] [PubMed]
  7. P. C. Goodwin, "Evaluating optical aberration using fluorescent microspheres: methods, analysis, and corrective actions," Methods Cell Biol. 81, 397-413 (2007). [CrossRef] [PubMed]
  8. H. R. Petty, "Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology," Microsc. Res. Tech. 70, 687-709 (2007). [CrossRef] [PubMed]
  9. M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Whole-field optically sectioned fluorescence lifetime imaging," Opt. Lett. 25, 1361-1363 (2000). [CrossRef]
  10. T. Uchimura, S. Kawanabe, Y. Maeda, and T. Imasaka, "Fluorescence lifetime imaging microscope consisting of a compact picosecond dye laser and a gated charge-coupled device camera for applications to living cells," Anal. Sci. 22, 1291-1295 (2006). [CrossRef] [PubMed]
  11. P. K. Urayama, W. Zhong, J. A. Beamish, F. K. Minn, R. D. Sloboda, K. H. Dragnev, E. Dmitrovsky, and M. A. Mycek, "A UV-visible fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution," App. Phys. B: Lasers Opt. 76, 483-496 (2003). [CrossRef]
  12. W. Zhong, P. Urayama, and M. A. Mycek, "Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: the potential for oxygen sensing," J. Phys. D-Appl. Phys. 36, 1689-1695 (2003). [CrossRef]
  13. W. Zhong, M. Wu, C.-W. Chang, K. A. Merrick, S. D. Merajver, and M. A. Mycek, "Picosecond-resolution fluorescence lifetime imaging microscopy: a useful tool for sensing molecular interactions in vivo via FRET," Opt. Express 15, 18220-18235 (2007). [CrossRef] [PubMed]
  14. E. Pietka and H. K. Huang, "Correction of Aberration in Image-Intensifier Systems," Computerized Medical Imaging and Graphics 16, 253-258 (1992). [CrossRef] [PubMed]
  15. M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. French, M. J. Lever, L. O. Sucharov, M. A. Neil, R. Juskaitis, and T. Wilson, "Time-domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203, 246-257 (2001). [CrossRef] [PubMed]
  16. A. Squire and P. I. Bastiaens, "Three dimensional image restoration in fluorescence lifetime imaging microscopy," J. Microsc. 193, 36-49 (1999). [CrossRef] [PubMed]
  17. J. Boutet de Monvel, S. Le Calvez, and M. Ulfendahl, "Image restoration for confocal microscopy: improving the limits of deconvolution, with application to the visualization of the mammalian hearing organ," Biophys. J. 80, 2455-2470 (2001). [CrossRef] [PubMed]
  18. Y. Q. Guan, Y. Y. Cai, X. Zhang, Y. T. Lee, and M. Opas, "Adaptive correction technique for 3D reconstruction of fluorescence microscopy images," Microsc. Res. Tech. 71, 146-157 (2008). [CrossRef]
  19. P. Pankajakshan, B. Zhang, L. Blanc-Feraud, Z. Kam, J. C. Olivo-Marin, and J. Zerubia, "Parametric blind deconvolution for confocal laser scanning microscopy," Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 6532-6535 (2007). [PubMed]
  20. J. B. Sibarita, "Deconvolution microscopy," Adv. Biochem. Eng. Biotechnol. 95, 201-243 (2005). [PubMed]
  21. B. J. Vermolen, Y. Garini, and I. T. Young, "3D restoration with multiple images acquired by a modified conventional microscope," Microsc. Res. Tech. 64, 113-125 (2004). [CrossRef] [PubMed]
  22. J. Markham and J. A. Conchello, "Fast maximum-likelihood image-restoration algorithms for three-dimensional fluorescence microscopy," J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 18, 1062-1071 (2001). [CrossRef] [PubMed]
  23. P. J. Verveer, M. J. Gemkow, and T. M. Jovin, "A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy," J. Microsc. 193, 50-61 (1999). [CrossRef]
  24. J. Siegel, D. S. Elson, S. E. Webb, K. C. Lee, A. Vlandas, G. L. Gambaruto, S. Leveque-Fort, M. J. Lever, P. J. Tadrous, G. W. Stamp, A. L. Wallace, A. Sandison, T. F. Watson, F. Alvarez, and P. M. French, "Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles," Appl. Opt. 42, 2995-3004 (2003). [CrossRef] [PubMed]
  25. J. B. de Monvel, E. Scarfone, S. Le Calvez, and M. Ulfendahl, "Image-adaptive deconvolution for three-dimensional deep biological imaging," Biophys. J. 85, 3991-4001 (2003). [CrossRef] [PubMed]
  26. J. M. Murray, P. L. Appleton, J. R. Swedlow, and J. C. Waters, "Evaluating performance in three-dimensional fluorescence microscopy," J. Microsc. 228, 390-405 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited