OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 19201–19207

Quantum dot dipole orientation and excitation efficiency of micropillar modes

A. G. Silva, C. A. Parra-Murillo, P. T. Valentim, J. S. V. Morais, F. Plentz, P. S. S. Guimarães, H. Vinck-Posada, B. A. Rodriguez, M. S. Skolnick, A. Tahraoui, and M. Hopkinson  »View Author Affiliations

Optics Express, Vol. 16, Issue 23, pp. 19201-19207 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (299 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The relative intensity of photonic modes in microcavity pillars with embedded self-assembled quantum dots is shown to be a sensitive function of quantum dot dipole orientation and position. This is deduced from a comparison of experiment and calculated intensities of light emission for many nominally identical pillars. We are able to obtain the overall degree of in-plane polarization of the quantum dot ensemble and also to obtain information on the degree of polarization along the growth axis.

© 2008 Optical Society of America

OCIS Codes
(000.0000) General : General
(230.5750) Optical devices : Resonators
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: September 8, 2008
Revised Manuscript: October 21, 2008
Manuscript Accepted: October 22, 2008
Published: November 5, 2008

A. G. Silva, C. A. Parra-Murillo, P. T. Valentim, J. S. Morais, F. Plentz, Paulo S. Guimaraes, H. Vinck-Posada, B. A. Rodriguez, M. S. Skolnick, A. Tahraoui, and M. Hopkinson, "Quantum dot dipole orientation and excitation efficiency of micropillar modes," Opt. Express 16, 19201-19207 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, "Optical microcavities," Nature (London) 424,839-846 (2003). [CrossRef]
  2. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69,681 (1946).
  3. J. M. G’erard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity," Phys. Rev. Lett. 81,1110-1113 (1998). [CrossRef]
  4. B. Gayral, "Controlling spontaneous emission dynamics in semiconductor microcavities: an experimental approach," Ann. Phys. Fr. 26,1-135 (2001). [CrossRef]
  5. J. M. G’erard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, L. Manin, E. Costard, V. Thierry- Mieg, and T. Rivera, "Quantum boxes as active probes for photonic microstructures: The pillar microcavity case," Appl. Phys. Lett. 69,449-451 (1996). [CrossRef]
  6. M. Pelton, J. Vu¡ckovi’c, G. S. Solomon, A. Scherer, and Y. Yamamoto, "Three-Dimensionally Confined Modes in Micropost Microcavities: Quality Factors and Purcell Factors," IEEE J. Quantum Electron. 38,170-177 (2002). [CrossRef]
  7. D. M. Whittaker, P. S. S. Guimar˜aes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, "High Q modes in elliptical microcavity pillars," Appl. Phys. Lett. 90,161105 (2007). [CrossRef]
  8. S. Yamamoto, F. Tassone, and H. Cao, Semiconductor Cavity Quantum Electrodynamics, no. 169 in Springer Tracts in Modern Physics, (Springer, Berlin, 2000).
  9. C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. H¨ofling, and A. Forchel, "Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems," Opt. Express 16,15006-15012 (2008). [CrossRef] [PubMed]
  10. A. Daraei, A. Tahraoui, D. Sanvitto, J. A. Timpson, P.W. Fry,M. Hopkinson, P. S. S. Guimar˜aes, H. Vinck, D. M. Whittaker, M. S. Skolnick, and A. M. Fox, "Control of polarized single quantum dot emission in high-qualityfactor microcavity pillars," Appl. Phys. Lett. 88,051113 (2006). [CrossRef]
  11. http://camfr.sourceforge.net/
  12. P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33,327-341 (2001). [CrossRef]
  13. D. F. G. Gallagher and T. P. Felici, "Eigenmode expansion methods for simulation of optical propagation in photonics - pros and cons," Proc. SPIE 4987,69-84 (2003). [CrossRef]
  14. I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, Ph. Roussignol, A. Badolato, P. M. Petroff, and J. M . G’erard, "Giant optical anisotropy in a single InAs quantum dot in a very dilute quantum-dot ensemble," Appl. Phys. Lett. 86,041904 (2005). [CrossRef]
  15. D. N. Krizhanovskii, A. Ebbens, A. I. Tartakovskii, F. Pulizzi, T. Wright, M. S. Skolnick, and M. Hopkinson, "Individual neutral and charged InxGa1-xAs-GaAs quantum dots with strong in-plane optical anisotropy," Phys. Rev. B 72,161312 (2005). [CrossRef]
  16. P. Jayavel, H. Tanaka, T. Kita, O. Wada, H. Ebe, M. Sugawara, J. Tatebayashi, Y. Arakawa, Y. Nakata, and T. Akiyama, "Control of optical polarization anisotropy in edge emitting luminescence of InAs/GaAs selfassembled quantum dots," Appl. Phys. Lett. 84,1820-1822 (2004). [CrossRef]
  17. V. Troncale, K. F. Karlsson, D. Y. Oberli, M. Byszewski, A. Malko, E. Pelucchi, A. Rudra, and E. Kapon, "Excited excitonic states observed in semiconductor quantum dots using polarization resolved optical spectroscopy," 101, 081703 (2007).
  18. J. -Y. Marzin, J. -M. G’erard, A. Izra¨el, D. Barrier, and G. Bastard, "Photoluminescence of Single InAs Quantum Dots Obtained by Self-Organized Growth on GaAs," Phys. Rev. Lett. 73,716-719 (1994). [CrossRef] [PubMed]
  19. A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimar˜aes, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew, and M. Hopkinson, "Control of polarization and mode mapping of small volume high Q micropillars," 102, 043105 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited