OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 19232–19243

High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source

Johannes Orphal and Albert A. Ruth  »View Author Affiliations

Optics Express, Vol. 16, Issue 23, pp. 19232-19243 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (341 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An incoherent broad-band cavity-enhanced absorption (IBB-CEA) set-up was used in combination with a Fourier-transform (FT) spectrometer in order to explore the potential of this technique for high-resolution molecular spectroscopy in the near-infrared region. Absorption spectra of overtone bands of CO2, OCS, and HD18O were measured between 5800 and 7000 cm−1 using a small sampling volume (1100 cm3, based on a 90 cm cavity length). The quality of the spectra in this study is comparable to that obtained with Fourier transform spectrometers employing standard multi-pass reflection cells, which require substantially larger sampling volumes. High-resolution methods such as FT-IBB-CEAS also provide an elegant way to determine effective mirror reflectivities (Reff, i.e. a measure of the inherent overall cavity loss) by using a calibration gas with well-known line strengths. For narrow absorption features and non-congested spectra this approach does not even require a zero-absorption measurement with the empty cavity. Absolute cross-sections or line strengths of a target species can also be determined in one single measurement, if gas mixtures with known partial pressures are used. This feature of FT-IBB-CEAS reduces systematic errors significantly; it is illustrated based on CO2 as calibration gas.

© 2008 Optical Society of America

OCIS Codes
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.1030) Spectroscopy : Absorption
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6390) Spectroscopy : Spectroscopy, molecular
(350.5730) Other areas of optics : Resolution

ToC Category:

Original Manuscript: September 19, 2008
Revised Manuscript: November 1, 2008
Manuscript Accepted: November 3, 2008
Published: November 5, 2008

Johannes Orphal and Albert A. Ruth, "High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source," Opt. Express 16, 19232-19243 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. O’Keefe and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources," Rev. Sci. Instrum. 59,2544-2551 (1988). [CrossRef]
  2. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashfold, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94,337-351 (1998). [CrossRef]
  3. G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and applications," Int. Rev. Phys. Chem. 19,565-607 (2000). [CrossRef]
  4. B. A. Paldus and A. A. Kachanov, "An historical overview of cavity-enhanced methods," Can. J. Phys. 83,975-999 (2005). [CrossRef]
  5. J. J. Scherer, J. B. Paul, H. Jiao, and A. O'Keefe, "Broadband ringdown spectral photography," Appl. Opt. 40,6725-6732 (2001). [CrossRef]
  6. S. M. Ball, I. M. Povey, E. G. Norton, and R. L. Jones, "Broadband cavity ringdown spectroscopy of the NO3 radical," Chem. Phys. Lett. 342,113-120 (2001). [CrossRef]
  7. S. M. Ball and R. L. Jones, "Broad-band cavity ring-down spectroscopy," Chem. Rev. 103,5239-5262 (2003). [CrossRef] [PubMed]
  8. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science 311,1595-1599 (2006). [CrossRef] [PubMed]
  9. M. J. Thorpe, D. D. Hudson, K. D. Moll, J. Lasri, and J. Ye, "Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45-1.65 ?m," Opt. Lett. 32,307-309 (2007). [CrossRef] [PubMed]
  10. T. Gherman and D. Romanini, "Mode-locked cavity-enhanced absorption spectroscopy," Opt. Express 10,1033-1042 (2002). [PubMed]
  11. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, "Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis," Opt. Express 16,2387-2397 (2008). [CrossRef] [PubMed]
  12. T. Gherman, E. Eslami, D. Romanini, S. Kassi, J-C. Vial, and N. Sadeghi, "High sensitivity broad-band modelocked cavity-enhanced absorption spectroscopy: measurement of Ar*(3P2) atom and N2+ ion densities," J. Phys. D 37,2408-2415 (2004). [CrossRef]
  13. S. E. Fiedler, A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chem. Phys. Lett. 371,284-294 (2003). [CrossRef]
  14. S. M. Ball, J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorption spectroscopy using light emitting diodes," Chem. Phys. Lett. 398,68-74 (2004). [CrossRef]
  15. D. S. Venables, T. Gherman, J. Orphal, J. C. Wenger, and A. A. Ruth, "High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy," Environ. Sci. Technol. 40,6758-6763 (2006). [CrossRef] [PubMed]
  16. J. M. Langridge, S. M. Ball, and R. L. Jones, "A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2," Analyst 131,916-922 (2006). [CrossRef] [PubMed]
  17. T. Gherman, D. S. Venables, S. Vaughan, J. Orphal, and A. A. Ruth, "Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultaviolet: application to HONO and NO2," Environ. Sci. Technol. 42,890-895 (2008). [CrossRef] [PubMed]
  18. S. Vaughan, T. Gherman, A. A. Ruth, and J. Orphal, "Incoherent broadband cavity-enhanced absorption spectroscopy of the marine boundary layer species I2, IO, and OIO," Phys. Chem. Chem. Phys. 10,4471-4777 (2008). [CrossRef] [PubMed]
  19. M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91,195-201 (2008). [CrossRef]
  20. S.  Dixneuf, A. A.  Ruth, S.  Vaughan, R. M.  Varma, and J.  Orphal, "The time dependence of molecular iodine emission from Laminaria digitata," Atm. Chem. Phys. Discuss. 8,16501-16516 (2008). [CrossRef]
  21. R. A.  Washenfelder, A. O.  Langford, H.  Fuchs, and S. S.  Brown, "Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer," Atm. Chem. Phys. Discuss. 8,16517-16553 (2008). [CrossRef]
  22. J. M. Langridge, T. Laurila, R. S. Watt, R. L. Jones, C. F. Kaminski, and J. Hult, "Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source," Opt. Express 16,10178-10188 (2008). [CrossRef] [PubMed]
  23. P. S. Johnston and K. K. Lehmann, "Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source," Opt. Express 16,15013-15023 (2008). [CrossRef] [PubMed]
  24. C. Domingo, A. Delolmo, R. Escribano, D. Bermejo, and J. M. Orza, "Fourier-transform intracavity laser-absorption spectra of the 6?1 band of CHD3," J. Chem. Phys. 96,972-975 (1992). [CrossRef]
  25. K. Strong, T. J. Johnson, and G. W. Harris, "Visible intracavity laser spectroscopy with a step-scan Fourier-transform interferometer," Appl. Opt. 36,8533-8540 (1997). [CrossRef]
  26. J. X. Cheng, H. Lin, S. M. Hu, S. G. He, Q. S. Zhu, and A. Kachanov, "Infrared intracavity laser absorption spectroscopy with a continuous-scan Fourier-transform interferometer," Appl. Opt. 39,2221-2229 (2000). [CrossRef]
  27. S. Kassi, C. Depiesse, M. Herman, and D. Hurtmans, "Fourier transform-intracavity laser absorption spectroscopy: sampling the overtone spectrum of (C2HD)-C-12m," Mol. Phys. 101,1155-1163 (2003). [CrossRef]
  28. N. Picqué, G. Guelachvili, and A. Kachanov, "High-sensitivity time-resolved intracavity laser Fourier transform spectroscopy with vertical-cavity surface-emitting multiple-quantum-well lasers," Opt. Lett. 28,313-315 (2003). [CrossRef] [PubMed]
  29. R. Engeln and G. Meijer, "A Fourier transform cavity ring down spectrometer," Rev. Sci. Instrum. 67,2708-2713 (1996). [CrossRef]
  30. E. Hamers, D. Schram, and R. Engeln, "Fourier transform phase shift cavity ring down spectroscopy," Chem. Phys. Lett. 365,237-243 (2002). [CrossRef]
  31. A. A. Ruth, J. Orphal, and S. Fiedler, "Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broad-band light source," Appl. Opt. 46,3611-3617 (2007). [CrossRef] [PubMed]
  32. J. Hult, R. S. Watt, and C. F. Kaminski, "High bandwidth absorption spectroscopy with a dispersed supercontinuum source," Opt. Express 15,11385-11395 (2007). [CrossRef] [PubMed]
  33. Z. Majcherova, P. Macko, D. Romanini, V. I. Perevalov, S. A. Tashkun, J.-L. Teffo, and A. Campargue, "High-sensitivity CW-cavity ringdown spectroscopy of 12CO2 near 1.5 ?m," J. Mol. Spectrosc. 230,1-21 (2005). [CrossRef]
  34. D. Boudjaadar, J.-Y. Mandin, V. Dana, N. Picqué, G. Guelachvili, L. Régalia-Jarlot, X. Thomas, and P. Von Der Heyden, "12C16O2 line intensity FTS measurements with 1% assumed accuracy in the 1.5-1.6 ?m spectral range," J. Mol. Spectrosc. 238,108-117 (2006). [CrossRef]
  35. C. E. Miller and L. R. Brown, "Near infrared spectroscopy of carbon dioxide I. 16O12C16O line positions," J. Mol. Spectrosc. 228,329-354 (2004). [CrossRef]
  36. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. ChackerianJr., K. V. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner: "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96,139-204 (2005). [CrossRef]
  37. C.-C. Chou, T. Lin, and J.-T. Shy, "Wavenumber measurements of CO2 transitions in 1.5-?m atmospheric window using an external-cavity diode laser," J. Mol. Spectrosc. 205,122-127 (2001). [CrossRef] [PubMed]
  38. Y. He and B. J. Orr, "Continuous-wave cavity ringdown absorption spectroscopy with a swept-frequency laser: rapid spectral sensing of gas-phase molecules," Appl. Opt. 44,6752-6761 (2005). [CrossRef] [PubMed]
  39. M. Bitter, S. M. Ball, I. M. Povey, and R. L. Jones, "A broadband cavity ringdown spectrometer for in situ measurements of atmospheric trace gases," Atmos. Chem. Phys. 5,2547-2560 (2005). [CrossRef]
  40. R. Varma, D. S. Venables, A. A. Ruth, U. Heitmann, E. Schlosser, and S. Dixneuf, "Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction," Appl. Opt.(submitted2008).
  41. M. Triki, P. Cermak, G. Méjean, and D. Romanini, "Cavity-enhanced absorption spectroscopy with a red LED source for NOx trace analysis," Appl. Phys. B 91,195-201 (2008). [CrossRef]
  42. D.  Lisak and J. T.  Hodges, "High-resolution cavity ring-down spectroscopy measurements of blended H2O transitions," Appl. Phys. B 88,317-325 (2007). [CrossRef]
  43. N. Ibrahim, P. Chelin, J. Orphal, and Y. I. Baranov, "Line parameters of H2O around 0.8 microns studied by tuneable diode laser spectroscopy," J. Quant. Spectr. Rad. Transfer 109,2523-2536 (2008). [CrossRef]
  44. E. Rbaihi, A. Belafhal, J. Vander Auwera, S. Naïm, and A. Fayt, "Fourier transform spectroscopy of carbonyl sulfide from 4800 to 8000 cm-1 and new global analysis of 16O12C32S," J. Mol. Spectrosc. 191, 32-33 (1998). [CrossRef] [PubMed]
  45. A.-W. Liu, O. Naumenko, K.-F. Song, B. Voronin, and S.-M. Hu, "Fourier-transform absorption spectroscopy of H218O in the first hexade region," J. Mol. Spectrosc. 236, 127-133 (2006). [CrossRef]
  46. P. Chelin, A. A. Ruth, and J. Orphal, "High-resolution absorption spectra and analysis of the overtone bands of HD18O in the 6100-6900 cm-1 region," J. Mol. Spectrosc. (in preparation).
  47. P. Roy, J.-B. Brubach, P. Calvani, G. De Marzia, A. Filabozzia, A. Gerschel, P. Giura, S. Lupi, O. Marcouillé, A. Mermet, A. Nucara, J. Orphal, A. Paolone, and M. Vervloet, "Infrared synchroton radiation: from the production to the spectroscopic and microscopic applications," Nucl. Instrum. Methods Phys. Res. A 467/468,426-436 (2001). [CrossRef]
  48. P. Roy, M. Rozières, Z. Qi, and O. Chubar, "The AILES infrared beamline on the third generation synchrotron radiation facility SOLEIL," Infrar. Phys. Technol. 49,139-146 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited