OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 19260–19270

Superresolution digital holographic microscopy for three-dimensional samples

Vicente Micó, Zeev Zalevsky, Carlos Ferreira, and Javier García  »View Author Affiliations


Optics Express, Vol. 16, Issue 23, pp. 19260-19270 (2008)
http://dx.doi.org/10.1364/OE.16.019260


View Full Text Article

Enhanced HTML    Acrobat PDF (1626 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An approach that allows superresolution imaging of three-dimensional (3-D) samples by numerical refocusing is presented in the field of digital holographic microscopy. Based on the object’s spectrum shift produced by tilted illumination, we present a time multiplexing superresolved approach to overcome the Abbe’s diffraction limit. The proposed approach uses a microscope in a Mach-Zehnder interferometric architecture with the particularity that the output plane does not coincide with the image plane. Thus, a set of off-axis non-image plane holograms are sequentially recorded for every tilted beam used in the illumination stage. After that and by using simple digital post-processing and numerical reconstruction, a 3-D superresolved sample volume is reconstructed slice-by-slice in terms of the definition of a synthetic aperture (SA) that expands the cutoff frequency of the microscope lens. Experimental results showing the capabilities of the proposed approach are presented.

© 2008 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(270.5580) Quantum optics : Quantum electrodynamics
(230.5298) Optical devices : Photonic crystals

ToC Category:
Image Processing

History
Original Manuscript: August 5, 2008
Revised Manuscript: September 15, 2008
Manuscript Accepted: September 22, 2008
Published: November 6, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Vicente Mico, Zeev Zalevsky, Carlos Ferreira, and Javier García, "Superresolution digital holographic microscopy for three-dimensional samples," Opt. Express 16, 19260-19270 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-19260


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman and R. W. Lawrence, "Digital Image Formation from Electronically Detected Holograms," Appl. Phys. Lett. 11, 77-79 (1967). [CrossRef]
  2. U. Schnars and W. P. Jueptner, Digital Holography, (Springer, 2005).
  3. T. Kreis, Hankbook of holographic interferometry: optical and digital methods (Wiley-VCH, 2005).
  4. L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2003).
  5. L. Yu and M. K. Kim, "Wavelength-scanning digital interference holography for tomographic 3D imaging using the angular spectrum method," Opt. Lett. 30, 2092-2094 (2005). [CrossRef] [PubMed]
  6. G. Pedrini, P. Froning, H. Tiziani, and F. Santoyo, "Shape measurement of microscopic structures using digital holograms," Opt. Commun. 164, 257-268 (1999). [CrossRef]
  7. E. Cuche, F. Bevilacqua, and Ch. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999). [CrossRef]
  8. C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000) [CrossRef]
  9. S. Murata and N. Yasuda, "Potential of digital holography in particle measurements," Opt. Laser Technol. 32, 567-574 (2000). [CrossRef]
  10. A. Stadelmaier and J. H. Massig, "Compensation of lens aberrations in digital holography," Opt. Lett. 25, 1630-1632 (2000). [CrossRef]
  11. B. W. Schilling, T.-Ch. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, "Three-dimensional holographic fluorescence microscopy," Opt. Lett. 22, 1506-1508 (1997). [CrossRef]
  12. E. Cuche, P. Marquet, and Ch. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999). [CrossRef]
  13. F. Dubois, L. Joannes, and J.-C. Legros, "Improved three-dimensional imaging with a digital holographic microscope with a source of partial spatial coherence," Appl. Opt. 38, 7085-7094 (1999). [CrossRef]
  14. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and Ch. Depeursinge, "Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy," Opt. Lett. 30, 468-470 (2005). [CrossRef] [PubMed]
  15. P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, "Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction," Opt. Lett. 31, 1405-1407 (2006). [CrossRef] [PubMed]
  16. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and Ch. Depeursinge, "Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements," Appl. Opt. 44, 4461-4469 (2005). [CrossRef] [PubMed]
  17. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, "Compensation of the Inherent Wave Front Curvature in Digital Holographic Coherent Microscopy for Quantitative Phase-Contrast Imaging," Appl. Opt. 42, 1938-1946 (2003). [CrossRef] [PubMed]
  18. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and Ch. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006). [CrossRef] [PubMed]
  19. J. Sheng, E. Malkiel, and J. Katz, "Digital holographic microscope for measuring three-dimensional particle distributions and motions," Appl. Opt. 45, 3893-3901 (2006). [CrossRef] [PubMed]
  20. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, "Extended focused image in microscopy by digital holography," Opt. Express 13, 6738-6749 (2005). [CrossRef] [PubMed]
  21. F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and Ch. Decaestecker, "Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration," J. Biomed. Opt. 11, 054032 (2006). [CrossRef] [PubMed]
  22. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948). [CrossRef] [PubMed]
  23. E. N. Leith and J. Upatnieks, "Reconstructed wavefronts and communication theory," J. Opt. Soc. Am. 52, 1123-1130 (1962). [CrossRef]
  24. E. N. Leith and J. Upatnieks, "Wavefront reconstruction with continuous-tone objects," J. Opt. Soc. Am. 53, 1377-1381 (1963). [CrossRef]
  25. E. N. Leith and J. Upatnieks, "Wavefront reconstruction with diffuse illumination and three-dimensional objects," J. Opt. Soc. Am. 54, 1295-1301 (1964). [CrossRef]
  26. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital In-line Holography for Biological Applications," Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2001). [CrossRef] [PubMed]
  27. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836-850 (2006). [CrossRef] [PubMed]
  28. J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, "Immersion digital in-line holographic microscopy," Opt. Lett. 31, 1211-1213 (2006). [CrossRef] [PubMed]
  29. C. J. Schwarz, Y. Kuznetsova and S. R. J. Brueck, "Imaging interferometric microscopy," Opt. Lett. 28, 1424-1426 (2003). [CrossRef] [PubMed]
  30. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Superresolved imaging in digital holography by superposition of tilted wavefronts," Appl. Opt. 45, 822-828 (2006). [CrossRef] [PubMed]
  31. V. Mico, Z. Zalevsky, and J. García, "Superresolution Optical System by Common-Path Interferometry," Opt. Express 14, 5168-5177 (2006). [CrossRef] [PubMed]
  32. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, "Synthetic Aperture Superresolution Using Multiple Off-axis Holograms," J. Opt. Soc. Am. A 23, 3162-3170 (2006). [CrossRef]
  33. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, "Imaging interferometric microscopy - approaching the linear systems limits of optical resolution," Opt. Express 15, 6651-6663 (2007). [CrossRef] [PubMed]
  34. J. R. Price, P. R. Bingham, and C. E. ThomasJr, "Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain," Appl. Opt. 46, 826-833 (2007). [CrossRef]
  35. G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, "Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms," Appl. Opt. 46, 993-1000 (2007). [CrossRef] [PubMed]
  36. V. Mico, Z. Zalevsky, and J. García, "Synthetic aperture microscopy using off-axis illumination and polarization coding," Opt. Commun. 276, 209-217 (2007). [CrossRef]
  37. V. Mico, Z. Zalevsky, and J. García, "Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution," Opt. Commun. 281, 4273-4281 (2008). [CrossRef]
  38. A. Neumann, Y. Kuznetsova, and S. R. Brueck, "Structured illumination for the extension of imaging interferometric microscopy," Opt. Express 16, 6785-6793 (2008). [CrossRef] [PubMed]
  39. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, "Fast algorithms for free-space diffraction patterns calculation," Opt. Commun. 164, 233-245 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (1968 KB)      QuickTime
» Media 2: MOV (2185 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited