OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 19271–19276

Phase modulation of surface plasmon polaritons by surface relief dielectric structures

Qian Wang, Xiaocong Yuan, Piausiong Tan, and Douguo Zhang  »View Author Affiliations


Optics Express, Vol. 16, Issue 23, pp. 19271-19276 (2008)
http://dx.doi.org/10.1364/OE.16.019271


View Full Text Article

Enhanced HTML    Acrobat PDF (146 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phase modulation of surface plasmon polaritons (SPPs) is studied as a function of geometric length and thickness of surface relief dielectric structures on a metal film. The results indicate that the SPPs are analogous to conventional free-space light waves in terms of phase modulation by geometric sizes and refractive indices. An SPP Fresnel zoneplate is considered as an example to employ the phase modulation method for focusing enhancement at the focal point. It is found that the phase modulation optimized zoneplate has obtained 130% higher electric field intensity at the focal point than that of an amplitude-modulated zoneplate.

© 2008 Optical Society of America

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 18, 2008
Revised Manuscript: November 4, 2008
Manuscript Accepted: November 5, 2008
Published: November 6, 2008

Citation
Qian Wang, Xiaocong Yuan, Piausiong Tan, and Douguo Zhang, "Phase modulation of surface plasmon polaritons by surface relief dielectric structures," Opt. Express 16, 19271-19276 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-19271


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  3. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002). [CrossRef]
  4. A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Surface plasmon propagation in an elliptical corral," Appl. Phys. Lett. 86, 074104 (2005). [CrossRef]
  5. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength focusing and guiding of surface plasmons," Nano Lett. 5, 1399-1402 (2005). [CrossRef] [PubMed]
  6. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin and A. Boltasseva, "Surface plasmon polariton beam focusing with parabolic nanoparticle chains," Opt. Express 15, 6576-6582 (2007). [CrossRef] [PubMed]
  7. L. Feng, K. A. Tetz, B. Slutsky, V. Lomakin, and Y. Fainman, "Fourier plasmonics: Diffractive focusing of in-plane surface plasmon polariton waves," Appl. Phys. Lett. 91, 081101 (2007). [CrossRef]
  8. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001). [CrossRef] [PubMed]
  9. J. C. Weeber, Y. Lacroute, and A. Dereux, "Optical near-field distributions of surface plasmon waveguide modes," Phys. Rev. B 68, 115401(2003). [CrossRef]
  10. D. Pacifici, H. J. Lezec, and H. A. Atwater, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nat. Photonics 1, 402-406 (2007). [CrossRef]
  11. A. L. Lereu, A. Passian, J. P. Goudonnet, T. Thundat, and T. L. Ferrell, "Optical modulation processes in thin films based on thermal effects of surface plasmons," Appl. Phys. Lett. 86, 154101 (2005). [CrossRef]
  12. A. Passian, A. L. Lereu, E. T. Arakawa, A. Wig, T. Thundat, and T. L. Ferrell, "Modulation of multiple photon energies by use of surface plasmons," Opt. Lett. 30, 41-43 (2005). [CrossRef] [PubMed]
  13. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, "Dielectric optical elements for surface plasmons," Opt. Lett. 30, 893-895 (2005). [CrossRef] [PubMed]
  14. H. Kim, J. Hahn, and L. Byoungho, "Focusing properties of surface plasmon polariton floating dielectric lenses," Opt. Express 16, 3049-3057 (2008). [CrossRef] [PubMed]
  15. S. Griesing, A. Englisch, and H. Uwe, "Refractive and reflective behavior of polymer prisms used for surface plasmon guidance," Opt. Lett. 33, 575-577 (2008). [CrossRef] [PubMed]
  16. H. Reather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, Berlin Heidelberg New York, London, 1988).
  17. X. G. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004). [CrossRef]
  18. Z. W. Liu, Q. H. Wei, and X. Zhang, "Surface plasmon interference nanolithography," Nano Lett. 5, 957-961 (2005). [CrossRef] [PubMed]
  19. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  20. K. S. Kunz and R. J. Luebbers, The finite difference time domain method for electromagnetics, (CRC Press, Boca Raton, Fla, 1993).
  21. Z. P. Liao, H. L. Wong, G. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Sci. Sin. 28, 1063-1076 (1984).
  22. T. Holmgaard and S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Phys. Rev. B 75, 245405 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited