OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 19285–19290

Modeling of Rabi splitting in quantum well microcavities using time-dependent transfer matrix method

X. F. Li and S. F. Yu  »View Author Affiliations

Optics Express, Vol. 16, Issue 23, pp. 19285-19290 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (456 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Rabi splitting in quantum well (QW) embedded in microcavities under strong coupling condition is modeled by a time-dependent transfer matrix model. The spectral response of QW under the influence of excitonic effects is simulated by infinite impulse digital filters. It is shown that the splitting energy obtained from the proposed model match well with that deduced from the reflection spectrum analysis. The lasing spectra observed from different transmission angles of the QW microcavity can also be calculated. Hence, it is proved that the proposed model can be used to design and analyze the lasing characteristics of QW microcavities under strong coupling condition.

© 2008 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(240.5420) Optics at surfaces : Polaritons
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 16, 2008
Revised Manuscript: October 8, 2008
Manuscript Accepted: October 8, 2008
Published: November 6, 2008

X. F. Li and S. F. Yu, "Modeling of Rabi splitting in quantum well microcavities using time-dependent transfer matrix method," Opt. Express 16, 19285-19290 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Sato, "Liquid-crystal lens-cells with variable focal length," Jpn. J. Appl. Phys. 18, 1679-1684 (1979).
  2. H. Ren and S. T. Wu, "Inhomogeneous polymer-dispersed liquid crystals with gradient refractive index," Appl. Phys. Lett. 81, 3537-3539 (2002). [CrossRef]
  3. H. Ren, Y. H. Fan, and S. T. Wu, "Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals," Appl. Phys. Lett. 83, 1515-1517 (2003). [CrossRef] [PubMed]
  4. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, "Liquid crystal lens with large focal length tunability and low operating voltage," Opt. Express 15, 11328-11335 (2007). [CrossRef]
  5. M. Ye, B. Wang, and S. Sato, "Liquid crystal lens with focal length variable from negative to positive values," IEEE Photon. Technol. Lett. 18, 78-81 (2006). [CrossRef] [PubMed]
  6. H. Ren, Y.-H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004). [CrossRef]
  7. T. Nose and S. Sato, "A liquid crystal microlens obtained with a nonuniform electric field," Liq. Cryst. 5, 1425-1433 (1989). [CrossRef]
  8. B. Wang, M. Ye, and S. Sato, "Experimental and numerical studies on liquid crystal lens with spherical electrode," Mol. Cryst. Liq. Cryst. 433, 217-227 (2005). [CrossRef]
  9. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid crystal lens with spherical electrode," Jpn. J. Appl. Phys. 41, L1232-L1233 (2002).
  10. H. Ren and S. T. Wu, "Adaptive liquid crystal lens with large focal length tenability," Opt. Express 14, 11292-11298 (2006) [CrossRef]
  11. P. J. W. Hands, A. K. Kirby, and G. D. Love, "Adaptive modally addressed liquid crystal lenses," Proc. SPIE 5518, 136-143 (2004). [CrossRef] [PubMed]
  12. M. Ye, S. Hayasaka, and S. Sato, "Liquid Crystal Lens Array with Hexagonal-Hole-Patterned Electrodes," Jpn. J. of Appl. Phys. 43, 6108-6111 (2004). [CrossRef]
  13. B. Wang, M. Ye, and S. Sato, "Liquid crystal lens with stacked structure of liquid-crystal layers," Opt. Commun. 250, 266-273 (2005)
  14. M. Ye, B. Wang, and S. Sato, "Liquid crystal lens with focus movable in focal plane," Opt. Commun. 259, 710-722 (2006)
  15. N. A. Clark, M. A. Handschy, and S. T. Lagerwall, "Ferroelectric Liquid Crystal Electro-optic using The Surface Stabilized Structure," Mol. Cryst. Liq. Cryst. 94, 213-234 (1983).
  16. Y. H. Fan, H. Ren, and S. T. Wu, "Electrically switchable Fresnel lens using a polymer-separated composite film," Opt. Express 13, 4141-4147 (2005).
  17. V. Y. Reshetnyak, S. L. Subota, and T. V. Galstian, "Theoretical analyses of the electric field control of focal length in a gradient polymer stabilized liquid crystal lens," Mol. Cryst. Liq. Cryst. 454, 187-200 (2006).
  18. M. Honma, T. Nose, and S. Sato, "Improvement of aberration properties of liquid crystal microlenses using the stacked electrode structure," Jpn. J. of Appl. Phys. 40, 1322-1327 (2001).
  19. M. Ye and S. Sato, "Optical Properties of Liquid Crystal Lens of Any Size," Jpn. J. Appl. Phys. 41, 571-573 (2002).
  20. M. Ye, B. Wang, M. Kawamura, and S. Sato, "Image Formation using Liquid Crystal Lens," Jpn. J. Appl. Phys. 46, 6776-6777 (2007).
  21. M. Ye and S. Sato, "Enhancement of focusing power of liquid crystal lens by new cell structure," Mol. Cryst. Liq. Cryst. 413, 417-421 (2004).
  22. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited