OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 19304–19309

Enhanced antireflecting properties of microstructured top-flat pyramids

R. Bouffaron, L. Escoubas, J. J. Simon, Ph. Torchio, F. Flory, G. Berginc, and Ph. Masclet  »View Author Affiliations


Optics Express, Vol. 16, Issue 23, pp. 19304-19309 (2008)
http://dx.doi.org/10.1364/OE.16.019304


View Full Text Article

Enhanced HTML    Acrobat PDF (462 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper aims at modeling bi-periodic micro-structured silicon surfaces exhibiting broadband antireflection properties in the infrared range using Rigorous Coupled-Wave Analysis (RCWA). These structures of pyramidal shape, which typical dimensions are smaller than the wavelength, are not in the Effective Medium Theory (EMT) validity domain. The influence of various opto-geometrical parameters such as period, depth, shape of the pattern is examined. The antireflective properties of such biperiodic patterned surfaces are then discussed using the photonic crystal theory and photonic band diagrams description. Correlations between the density of Bloch modes, their localizations with respect to the incident medium light line and the surface reflectance are presented.

© 2008 Optical Society of America

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(050.5298) Diffraction and gratings : Photonic crystals
(050.5745) Diffraction and gratings : Resonance domain
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 18, 2008
Revised Manuscript: July 17, 2008
Manuscript Accepted: July 17, 2008
Published: November 7, 2008

Citation
R. Bouffaron, L. Escoubas, J. J. Simon, Ph. Torchio, F. Flory, G. Berginc, and Ph. Masclet, "Enhanced antireflecting properties of micro-structured top-flat pyramids," Opt. Express 16, 19304-19309 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-23-19304


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Pickering, R. L. Taylor and D. T. Moore, "Gradient infrared optical material prepared by a chemical vapor deposition process," Appl. Opt. 25,3364 - 3372 (1986). [CrossRef] [PubMed]
  2. E. F. Schubert, J. K. Kim and J. Q. Xi, "Low-refractive-index materials: A new class of optical thin-film materials," Phys. Status Solidi B 244,3002 - 3008 (2007). [CrossRef]
  3. P. H. Clapham and M. C. Hutley, "Reduction of Lens Reflexion by the 'Moth Eye' Principle," Nature 244, 281 - 282 (1973). [CrossRef]
  4. G. Zhang, J. Zhang, G. Xie, Z. Liu and H. Shao, "Cicada wings: a stamp from Nature for nanoimprint lithography," Small 2,1440 - 1443 (2006). [CrossRef] [PubMed]
  5. M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1980), 705 - 708.
  6. E. Grann, M. Moharam and D. Pommet, "Optimal design for antireflective tapered two-dimensional subwavelength grating structures," J. Opt. Soc. Am. A 12,333 - 339 (1995). [CrossRef]
  7. M. Auslender, D. Levy and S. Hava "One-dimensional antireflection gratings in <100> silicon: a numerical study," Appl. Opt. 37, 369 - 373 (1998). [CrossRef]
  8. Y. Kanamori, M. Sasaki and K. Hane, "Broadband antireflection gratings fabricated upon silicon substrates," Opt. Lett. 24,1422 - 1424 (1999). [CrossRef]
  9. P. Lalanne and M. Hutley, "Artificial media optical properties - subwavelength scale," Encyclopedia of Optical Engineering, 62 - 71 (2003).
  10. R. Leitel, U. Schulz, N. Kaiser and A. Tünnermann, "Stochastic subwavelength structures on poly(methyl methacrymate) surfaces for antireflection generated by plasma treatment," Appl. Opt. 47, C143 - C146 (2008). [CrossRef] [PubMed]
  11. L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory and H. Giovannini, "An antireflective silicon grating working in the resonance domain for the near infrared spectral region," Opt. Commun. 226,81 - 88 (2003). [CrossRef]
  12. Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur and J. C. Campbell, "Microstructured silicon photodetector," Appl. Phys. Lett. 89, 033506 (2006). [CrossRef]
  13. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita and M. Yamaguchi, "Light trapping effect of submicron surface textures in crystalline Si solar cells," Progress in Photovoltaics: Research and Applications 15, 415 - 423 (2007). [CrossRef]
  14. C. Seassal, Y. Park, E. Drouard, E. Fourmond, A. Kaminski, M. Lemiti, X. Letartre and P. Viktorovitch, "Photonic crystal assisted ultra-thin silicon photovoltaic solar cell," presented at SPIE Photonics Europe, Strasbourg, France, April 2008.
  15. T. Clausnitzer, T. Kämpfe, E. B. Kley, A. Tünnermann, U. Peschel, A. V. Tishchenko and O. Parriaux, "An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings," Opt. Express 13,10448 - 10456 (2005). [CrossRef] [PubMed]
  16. M. G. Moharam and T. K. Gaylord "Rigorous coupled-wave analysis of planar grating diffraction," J. Opt. Soc. Am. 71 (7), 811 - 818 (1981). [CrossRef]
  17. A. Tavlove, Computationel Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, MA, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited