OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 23 — Nov. 10, 2008
  • pp: 19342–19353

Energy considerations for a superlens based on metal/dielectric multilayers

Mark J. Bloemer, Giuseppe D’Aguanno, Michael Scalora, Nadia Mattiucci, and Domenico de Ceglia  »View Author Affiliations

Optics Express, Vol. 16, Issue 23, pp. 19342-19353 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (253 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the resolution and absorption losses of a Ag/GaP multilayer superlens. For a fixed source to image distance the resolution is independent of the position of the lens but the losses depend strongly on the lens placement. The absorption losses associated with the evanescent waves can be significantly larger than losses associated with the propagating waves especially when the superlens is close to the source. The interpretation of transmittance values greater than unity for evanescent waves is clarified with respect to the associated absorption losses.

© 2008 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Photonic Crystals

Original Manuscript: August 12, 2008
Revised Manuscript: September 26, 2008
Manuscript Accepted: October 3, 2008
Published: November 7, 2008

Mark J. Bloemer, Giuseppe D’Aguanno, Michael Scalora, Nadia Mattiucci, and Domenico de Ceglia, "Energy considerations for a superlens based on metal/dielectric multilayers," Opt. Express 16, 19342-19353 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  2. S. Anantha Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Opt. 50, 1419-1430 (2003).
  3. H. Shin and S. Fan, "All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals," Appl. Phys. Lett. 89, 151102 (2006). [CrossRef]
  4. D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D'Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, "Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges," Phys. Rev. A 77, 033848 (2008). [CrossRef]
  5. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science 315, 1686-1686 (2007).
  6. M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, "Broadband super-resolving lens with high transparency in the visible range," Appl. Phys. Lett. 90, 174113 (2007). [CrossRef]
  7. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, and C. M. Bowden, "Transparent, metallo-dielectric, one-dimensional, photonic band-gap structure," J Appl. Phys. 83, 2377-2383 (1998). [CrossRef]
  8. M. J. Bloemer and Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett. 72, 1676-1678 (1998).
  9. M. Scalora, M. J. Bloemer, and C. M. Bowden, "Laminated photonic band structures with high conductivity and high transparency: metals under a new light," Opt. Photon. News 10, 23-27 (1999). [CrossRef]
  10. J. M. Bennett, "Precise method for measuring the phase change on reflection," J Opt. Soc. Am. 54, 612-624 (1964). [CrossRef]
  11. B. Bates and D. J. Bradley, "Interference filters for the far ultraviolet," Appl. Opt. 5, 971 (1966). [CrossRef] [PubMed]
  12. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  13. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  14. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, "Finite-difference time domain studies of light transmission through nanohole structures," Appl. Phys. B 84, 11-18 (2006). [CrossRef]
  15. A. Yariv, P. Yeh, Optical Waves in Crystals (John Wiley & Sons, New York, 1984).
  16. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1960).
  17. G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, "Optical vortices during a superresolution process in a metamaterial," Phys. Rev. A 77043825 (2008) [CrossRef]
  18. E. D. Palik ed., Handbook of Optical Constants of Solids (Academic, New York, 1985)pp. 350- 445.
  19. S. Ciraci and I. P. Batra, "Theory of quantum size effect in simple metals," Phys. Rev. B 33, 4294-4297 (1986). [CrossRef]
  20. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Pyhs. Rev. Lett. 95, 063901 (2005). [CrossRef]
  21. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science 317, 83-85 (2007). [CrossRef] [PubMed]
  22. V. A. Podolskiy, N. A. Kuhta, and G. W. Milton, "Optimizing the Superlens: Manipulating geometry to enhance the resolution," Appl. Phys. Lett. 87231113 (2005) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited