OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 16, Iss. 24 — Nov. 24, 2008
  • pp: 19447–19461

Quantum cascade lasers with integrated plasmonic antenna-array collimators

Nanfang Yu, Romain Blanchard, Jonathan Fan, Qi Jie Wang, Christian Pflügl, Laurent Diehl, Tadataka Edamura, Masamichi Yamanishi, Hirofumi Kan, and Federico Capasso  »View Author Affiliations


Optics Express, Vol. 16, Issue 24, pp. 19447-19461 (2008)
http://dx.doi.org/10.1364/OE.16.019447


View Full Text Article

Enhanced HTML    Acrobat PDF (1227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrated in simulations and experiments that by defining a properly designed two-dimensional metallic aperture-grating structure on the facet of quantum cascade lasers, a small beam divergence angle can be achieved in directions both perpendicular and parallel to the laser waveguide layers (denoted as θ⊥ and θ‖, respectively). Beam divergence angles as small as θ⊥=2.7o and θ‖=3.7o have been demonstrated. This is a reduction by a factor of ~30 and ~10, respectively, compared to those of the original lasers emitting at a wavelength of 8.06 µm. The devices preserve good room temperature performance with output power as high as ~55% of that of the original unpatterned lasers. We studied in detail the trade-off between beam divergence and power throughput for the fabricated devices. We demonstrated plasmonic collimation for buried heterostructure lasers and ridge lasers; devices with different waveguide structures but with the same plasmonic collimator design showed similar performance. We also studied a device patterned with a “spider’s web” pattern, which gives us insight into the distribution of surface plasmons on the laser facet.

© 2008 Optical Society of America

OCIS Codes
(120.1680) Instrumentation, measurement, and metrology : Collimation
(240.6680) Optics at surfaces : Surface plasmons
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 13, 2008
Revised Manuscript: September 19, 2008
Manuscript Accepted: September 21, 2008
Published: November 10, 2008

Citation
Nanfang Yu, Romain Blanchard, Jonathan Fan, Qi Jie Wang, Christian Pflügl, Laurent Diehl, Tadataka Edamura, Masamichi Yamanishi, Hirofumi Kan, and Federico Capasso, "Quantum cascade lasers with integrated plasmonic antenna-array collimators," Opt. Express 16, 19447-19461 (2008)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19447


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. Atwater, "The promise of plasmonics," Sci. Am. 296, 56-63 (2007). [CrossRef] [PubMed]
  2. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  3. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  4. N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Höfler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett. 91, 173113 (2007). [CrossRef]
  5. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007). [CrossRef] [PubMed]
  6. Q1. T. Mukaihara, N. Ohnoki, Y. Hayashi, N. Hatori, F. Koyama, and K. Iga, "Polarization control of vertical-cavity surface-emitting lasers using a birefringent metal/dielectric polarizer loaded on top distributed Bragg reflector," IEEE J Sel.Topics Quantum Electron. 1, 667-673 (1995). [CrossRef]
  7. J.-H. Ser, Y.-G. Ju, J.-H. Shin, and Y. H. Lee, "Polarization stabilization of vertical-cavity top-surface-emitting lasers by inscription of fine metal-interlaced gratings," Appl. Phys. Lett. 66, 2769-2771 (1995). [CrossRef]
  8. C.-A. Berseth, B. Dwir, I. Utke, H. Pier, A. Rudra, V. P. Iakovlev, E. Kapon, and M. Moser, "Vertical cavity surface emitting lasers incorporating structured mirrors patterned by electron-beam lithography," J. Vac. Sci. Technol. B 17, 3222-3225 (1999). [CrossRef]
  9. Q2. P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, "Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study," IEEE J Sel.Topics Quantum Electron. 11, 107-116 (2005). [CrossRef]
  10. S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, "Compact and polarization controlled 1.55 m vertical-cavity surface emitting laser using single-layer photonic crystal mirror," Appl. Phys. Lett. 91, 071105 (2007). [CrossRef]
  11. P. Babu Dayal and F. Koyama, "Polarization control of 0.85 m vertical-cavity surface-emitting lasers integrated with gold nanorod arrays," Appl. Phys. Lett. 91, 111107 (2007). [CrossRef]
  12. Q3. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nat. Photonics 1, 119-122 (2007). [CrossRef]
  13. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002). [CrossRef] [PubMed]
  14. J. Gao, G. Song, Q. Gan, B. Guo, and L. Chen, "Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser," Laser Phys. Lett. 4, 234-237 (2007). [CrossRef]
  15. J. Feng, T. Okamoto, and S. Kawata, "Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices," Appl. Phys. Lett. 87, 241109 (2005). [CrossRef]
  16. J. Feng and T. Okamoto, "Enhancement of electroluminescence through a two-dimensional corrugated metal film by grating-induced surface-plasmon cross coupling," Opt. Lett. 30, 2302-2304 (2005). [CrossRef] [PubMed]
  17. M. D. Harries and H. D. Summers, "Directional control of light-emitting-diode emission via a subwavelength-apertured metal surface," IEEE Photon. Tech. Lett. 18, 2197-2199 (2006). [CrossRef]
  18. D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 m quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999). [CrossRef]
  19. W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers, " Appl. Phys. Lett. 77, 2086-2088 (2000). [CrossRef]
  20. C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211101 (2005). [CrossRef]
  21. Q4. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small-divergence semiconductor lasers by plasmonic collimation," Nat. Photonics 2, 564-570 (2008). [CrossRef]
  22. N. Yu, R. Blanchard, J. Fan, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, "Small divergence semiconductor lasers with two-dimensional plasmonic collimators," Appl. Phys. Lett. (to appear).
  23. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003). [CrossRef] [PubMed]
  24. L.-B. Yu, D.-Z. Lin, Y.-C. Chen, Y.-C. Chang, K.-T. Huang, J.-W. Liaw, J.-T. Yeh, J.-M. Liu, C.-S. Yeh, and C.-K. Lee, "Physical origin of directional beaming emitted from a subwavelength slit," Phys. Rev. B 71, 041405(R) (2005). [CrossRef]
  25. F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003). [CrossRef]
  26. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, Cambridge, 2000).
  27. S. -H. Chang, S. Gray, and G. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3165 (2005). [CrossRef] [PubMed]
  28. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and C. W. Kimball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004). [CrossRef]
  29. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, "Resonant and non-resonant generation and focusing of surface plasmons with circular gratings," Opt. Express 14, 5664-5670 (2006). [CrossRef] [PubMed]
  30. A. Taflove, and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd edition (Artech House Publishers, Norwood, Massachusetts, 2000).
  31. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227 - 6244 (1996). [CrossRef]
  32. G. Lévêque, O. J. F. Martin, and J. Weiner, "Transient behavior of surface plasmon polaritons scattered at a subwavelength groove," Phys. Rev. B 76, 155418 (2007). [CrossRef]
  33. Q5. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O'Dwyer, J. Weiner, and H. J. Lezec, "The optical response of nanostructured surfaces and the composite diffracted evanescent wave model," Nat. Phys. 2, 262-267 (2006). [CrossRef]
  34. Q6. P. Lalanne and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2, 551-556 (2006). [CrossRef]
  35. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).
  36. A symmetric grating provides minimum momentum for flipping the direction of the SP wavevector.
  37. K. Fujita, S. Furuta, A. Sugiyama, T. Ochiai, T. Edamura, N. Akikusa, M. Yamanishi, and H. Kan, "Room temperature, continuous-wave operation of quantum cascade lasers with single phonon resonance-continuum depopulation structures grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 91, 141121 (2007). [CrossRef]
  38. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85-87 (1996). [CrossRef]
  39. P. C. Hidber, W. Helbig, E. Kim, and G. M. Whitesides, "Microcontact printing of Palladium colloids: micron-scale patterning by electroless deposition of copper," Langmuir 12, 1375-1380 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited